Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 3
217
Views
9
CrossRef citations to date
0
Altmetric
ARTICLES

The time-dependent health and biochemical effects in rats exposed to stainless steel welding dust and its soluble form

, , , , &
Pages 265-273 | Received 16 Jun 2016, Accepted 29 Sep 2016, Published online: 30 Nov 2016

References

  • Antonini, J.M.; Krishna Murthy, G.S.; Rogers, R.A.; Albert, R.; Urlich, G.D.; Brain, J.D. Pneumotoxicity and pulmonary clearance of different welding fumes after intratracheal instillation in the rat. Toxicol. Appl. Pharmacol. 1996, 140, 188–199.
  • Anttila, S. Dissolution of stainless steel welding fumes in the rat lung: An x ray microanalytical study. Br. J. Ind. Med. 1986, 43, 592–596.
  • Karlsen, J.T.; Farrants, G.; Torgeimrsen, T.; Reith, A. Chemical composition and morphology of welding fume particles and grinding dust. Am. Ind. Hyg. Assoc. J. 1992, 53, 290–297.
  • Van Der Wal, J.F. Exposure of welders to fumes and gases in Dutch industries: Summary of results. Ann. Occup. Hyg. 1990, 34, 45–55.
  • Antonini, J.M.; Roberts, J.R.;Chapman, R.S.;Soukup, J.M.; Ghio, A.J.; Sriram, K. Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes. Inhal Toxicol. 2010, 22, 805–816.
  • Antonini, J.M.; Leonard, S.S.; Roberts, J.R.; Solano-Lopez, C.; Young, S.H.; Shi, X.; Taylor, M.D. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Mol. Cell Biochem. 2005, 279, 17–23.
  • Hunting, K.L.; Welch, L.S. Occupational exposure to dust and lung disease among sheet metal workers. Br. J. Ind. Med. 1993, 50, 432–442.
  • Buerke, U.; Schneider, J.; Rosler, J.; Woitowitz, H.J. Interstitial pulmonary fibrosis after severe exposure to welding fumes. Am. J. Ind. Med. 2002, 41, 259–268.
  • Kilburn, K.H.; Warshaw, R.H.; Boylen, C.T.; Thornton, J.C. Respiratory symptoms and functional impairment from acute (cross-shift) exposure to welding gases and fumes. Am. J. Med. Sci. 1989, 298, 314–319.
  • Akbar-Khanzadeh, F. Short-term respiratory function changes in relation to workshift welding fume exposures. Inter. Arch. Occup. Environ. Health 1993, 64, 393–397.
  • Sobaszek, A.; Boulenguez, C.; Frimat, P.;, Robin, H.; Hagenouer, J.M.; Edme, J.L. Acute respiratoty effecfts of exposure to stainles steel and mild steel welding fumes. J. Occup. Environ. Med. 2000, 42, 923–931.
  • Solano-Lopez, C.; Zeidler-Erdely, P.C.;, Hubbs, A.F.; Reynolds, S.H.; Roberts, J.R.; Taylor, M.D.; Young, S.H.; Castranova, V.; Antonini, J.M. Welding fume exposure and associated inflammatory and hyperplastic changes in the lungs of tumor susceptible a/j mice. Toxicol. Pathol. 2006, 34, 364–372.
  • Patel, R.R.; Yi, E.S.; Ryu, J.H. Systemic iron overload associated with Welder's siderosis. Am. J. Med. Sci. 2009, 337, 57–59.
  • Wittczak, T.; Dudek, W.; Walusiak-Skorupa, J.; Świerczyńska-Machura, D.; Cader, W.; Kowalczyk, M.; Pałczynski, C. Metal-induced asthma and chest X-ray changes in welders. Int. J. Occup. Med. Environ. Health 2012, 25, 242–250.
  • Guida, F.; Papadopoulos, A.; Menvielle, G.; Matrat, M.; Févotte, J.; Cénée, S.I.; Cyr, D.; Schmaus, A.; Carton, M.; Paget-Bailly, S.; Radoï, L.; Tarnaud, C.; Bara, S.; Trétarre, B.; Luce, D.; Stücker, I. Risk of lung cancer and occupational history: Results of a French population-based case-control study, the ICARE study. J. Occup. Environ. Med. 2011, 53, 1068–1077.
  • Win-Shwe, T.T. and Hidekazu Fujimaki, H. Nanoparticles and Neurotoxicity. Int. J. Mol. Sci. 2011, 12, 6267–6280.
  • McMillan, G. Is electric arc welding linked to manganism or Parkinson's disease? Toxicol Rev. 2005, 24, 237–257.
  • Bowler, R.M.; Roels, H.A.; Nakagawa, S.; Drezgic, M.; Diamond, E.; Park, R.; Koller, W.; Bowler, R.P.; Mergler, D.; Bouchard, M.; Smith, D.; Gwiazda, R.; Doty, R.L. Dose-effect relationships between manganese exposure and neurological, neuropsychological and pulmonary function in confined space bridge welders. Occup. Environ. Med. 2007, 64, 167–177.
  • Bowler, R.M.; Gocheva, V.; Harris, M.; Ngo, L.; Abdelouahab, N., Wilkinson, J.; Doty, R.L.; Park, R.; Roels, H.A. Prospective study on neurotoxic effects in manganese-exposed bridge construction welders. Neurotoxicology 2011, 32, 596–605.
  • Searles Nielsen, S.; Checkoway, H.; Criswell, S.R.; Farin, F.M.; Stapleton, P.L.; Sheppard, L. Inducible nitric oxide synthase gene methylation and parkinsonism in manganese-exposed welders. Parkinsonism Relat. Disord. 2015, 21, 355–360.
  • Sriram, K.; Jefferson, A.M.; Lin, G.X.; Afshari, A.; Zeidler-Erdely, P.C.; Meighan, T.G.; McKinney, W.; Jackson, M.; Cumpston, A.; Cumpston, J.L.; Leonard, H.D.; Frazer, D.G.; Antonini, J.M. Neurotoxicity following acute inhalation of aerosols generated during resistance spot weld-bonding of carbon steel. Inhal. Toxicol. 2014, 26, 720–732.
  • Marreilha Dos Santos, A.P.; Lopes Santos, M.; Batoréu, M.C.; Aschner, M. Prolactin is a peripheral marker of manganese neurotoxicity. Brain Res. 2011, 1382, 282–290.
  • Palmer, C. Molecules in the brain trigger ageing. Nat. News 2013, 12891. doi:10.1038/nature.2013.12891
  • Souza, T.; Jennen, D.; van Delft, J.; van Herwijnen, M.; Kyrtoupolos, S.; Kleinjans, J. New insights into BaP-induced toxicity: Role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch. Toxicol. 2016, 90, 1449–1458.
  • Van Dyke, T.E.; Kornman, K.S. Inflammation and factors that may regulate inflammatory response. J. Periodontol. 2008, 79, 1503–1507.
  • Licastro, F.; Candore, G.; Lio, D; Porcellini, E.; Colonna-Romano, G.; Franceschi, C.; Caruso, C. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing. 2005, 2, 8–21.
  • Antonini, J.M.; Sriram, K.; Benkovic, S.A.; Roberts, J.R.; Stone, S, Chen, B.T.; Schwegler-Berry, D.; Jefferson, A.M.; Billig, B.K.; Felton, C.M.; Hammer, M.A.; Ma, F.; Frazer, D.G.; O'Callaghan, J,P.; Miller, D.B. Mild steel welding fume causes manganese accumulation and subtle neuroinflammatory changes but not overt neuronal damage in discrete brain regions of rats after short-term inhalation exposure. Neurotoxicology 2009, 30, 915–925.
  • McNeilly, J.D.; Jiménez, L.A.; Clay, M.F.; MacNee, W.; Howe, A.; Heal, M.R. Soluble transition metals in welding fumes cause inflammation via activation of NF-kappaB and AP-1. Toxicol. Lett. 2005, 158, 152–157.
  • Prabhakaran, K.; Ghosh, D.; Chapman, G.D.; Gunasekar, P.G. Molecular mechanism of manganese exposure-induced dopaminergic toxicity. Brain Res. Bull. 2008, 76, 361–367.
  • Prabhakaran, K.; Chapman, G.D.; Gunasekar, P.G. α-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-κB-mediated pathway. Toxicol. Mech. Methods 2011, 21, 435–443.
  • Bowman, A.B.; Kwakye, G.F.; Hernández, E.H.; Aschner, M. Role of manganese in neurodegenerative diseases. J. Trace Elem. Med. Biol. 2011, 25, 191–203.
  • Zhao, L.; Song, Y.; Pu, J.; Guo, J.;, Wang, Y.; Chen, Z.; Chen, T.; Gu, Y.; Jia, G. Effects of repeated Cr(VI) intratracheal instillation on club (Clara) cells and activation of nuclear factor-kappa B pathway via oxidative stress. Toxicol. Lett. 2014, 231, 72–81.
  • Madrigal, J.L.; Moro, M.A.; Lizasoain, I.; Lorenzo, P.; Castrillo, A.; Boscá, L.; Leza, J.C. Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J. Neurochem. 2001, 76, 532–538.
  • Munhoz, C.D.; García-Bueno, B.;, Madriga, J.L.; Lepsch, L.B.; Scavone, C.; Leza, J.C. Stress-induced neuroinflammation: Mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res. 2008, 41, 1037–1046.
  • Ganesan, B.; Anandan, R.; Lakshmanan, P.T. Studies on the protective effects of betaine against oxidative damage during experimentally induced restraint stress in Wistar albino rats. Cell Stress Chaperones. 2011, 16, 641–652.
  • Bradford, M.M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254.
  • Ling, S.; Jamali, F. Effect of cannulation surgery and restraint stress on the plasma corticosterone concentration in the rat: Application of an improved corticosterone hplc assay. J. Pharm. Pharmaceutic Sci. 2003, 6, 246–251.
  • Wasowicz, W.; Nève, J.; Peretz, A. Optimized steps in fluorometric determination of thiobarbituric acid-reactive substances in serum: Importance of extraction pH and influence of sample preservation and storage. Clin. Chem. 1993, 39, 2522–2526.
  • Cena, L.G.; Chisholm, W.P.; Keane, M.J.; Chen, B.T. A field study on the respiratory deposition of the nano-sized fraction of mild and stainless steel welding fume metals. J. Occup. Environ. Hyg. 2015, 12, 21–28.
  • Cena, L.G.; Chisholm, W.P.; Keane, M.J.; Cumpston, A.; Chen, B.T. Size distribution and estimated respiratory deposition of total chromium, hexavalent chromium, manganese, and nickel in gas metal arc welding fume aerosols. Aerosol Sci. Technol. 2014, 48, 1254–1263.
  • Hirano, S. Evaluation of pulmonary toxicity of heavy metal compounds. Nihon Eiseigaku Zasshi. 1996, 50, 1013–1025.
  • Kodavanti, U.P.; Hauser, R.; Christiani, D.C.; Meng, Z.H.; McGee, J.; Ledbetter, A.; Richards, J.; Costa, D.L. Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicol. Sci. 1998, 43, 204–212.
  • Hattiwale, S.H.; Saha, S.; Yendigeri, S.M.;, Jargar, J.G.; Dhundasi, S.A.; Das, K.K. Protective effect of L-ascorbic acid on nickel induced pulmonary nitrosative stress in male albino rats. Biometals 2013, 26, 329–336.
  • Malsch, P.A.; Proctor, D.M.; Finley, B.L. Estimation of a chromium inhalation reference concentration using the benchmark dose method: A case study. Regul. Toxicol. Pharmacol. 1994, 20, 58–82.
  • Lambert, A.L.; Dong, W.; Selgrade, M.K.; Gilmour, M.I. Enhanced allergic sensitization by residual oil fly ash particles is mediated by soluble metal constituents. Toxicol. Appl. Pharmacol. 2000, 165, 84–93.
  • Kawanishi, S.; Inoue, S.; Oikawa, S.; Yamashita, N.; Toyokuni, S; Kawanishi, M.; Nishino, K. Oxidative DNA damage in cultured cells and rat lungs by carcinogenic nickel compounds. Free Radic. Biol. Med. 2001, 31, 108–116.
  • Baldwin, L.; Hunt, J.A. Host inflammatory response to NiCr, CoCr, and Ti in a soft tissue implantation model. J. Biomed. Mater. Res. A. 2006, 79, 574–581.
  • Antonini, J.M.; Zeidler-Erdely, P.C.; Young, S.H.; Roberts, J.R.; Erdely A. Systemic immune cell response in rats after pulmonary exposure to manganese-containing particles collected from welding aerosols. J. Immunotoxicol. 2012, 9, 184–192.
  • Shi, X.; Chiu, A.; Chen, C..T.; Halliwel,l, B.; Castranova, V.; Vallyathan, V. Reduction of chromium(VI) and its relationship to carcinogenesis. J. Toxicol. Environ. Health B Crit. Rev. 1999, 2, 87–104.
  • Freitas, M.; Gomes, A.; Porto, G. Fernandez E. Nickel induces oxidative burst, NF-κB activation and interleukin-8 production in human neutrophils. J. Biol. Inorg. Chem. 2010, 15, 127512–127583.
  • Huffman, L.J.; Prugh, D.J.; Millecchia, L.; Schuller, K.C.; Cantrell, S.; Porter, D.W. Nitric oxide production by rat bronchoalveolar macrophages or polymorphonuclear leukocytes following intratracheal instillation of lipopolysaccharide or silica. J. Biosci. 2003, 28, 29–37.
  • Marin, D.P., Bolin, A.P., Macedo, R., de, C., Sampaio, S.C., Otton, R. ROS production in neutrophils from alloxan-induced diabetic rats treated in vivo with astaxanthin. Int. Immunopharmacol. 2011, 11, 103–109.
  • Gupta, S.; Ahmad, N.; Husain, M.M.; Srivastava, R.C. Involvement of nitric oxide in nickel-induced hyperglycemia in rats. Nitric Oxide. 2000, 4, 129–138.
  • Maitra, S.R.; Wang, S.; Brathwaite, C.E.; El-Maghrabi, M.R. Alterations in glucose-6-phosphatase gene expression in sepsis. J. Trauma. 2000, 49, 38–42.
  • Elliott, E.M.; Sapolsky, R.M. Corticosterone enhances kainic acid-induced calcium elevation in cultured hippocampal neurons. J. Neurochem. 1992, 59, 1033–1040.
  • Eliott, E.M.; Sapolski, R.M. Corticosterone impairs hippocampal neuronal calcium regulation—possible mediating mechanisms. Brain Res. 1993, 602, 84–90.
  • Gadek-Michalska, A.; Tadeusz, J.; Rachwalska, P.; Bugajski, J. Chronic stress adaptation of the nitric oxide synthases and IL-1β levels in brain structures and hypothalamic-pituitary-adrenal axis activity induced by homotypic stress. J. Physiol. Pharmacol. 2015, 66, 427–440.
  • Klasing, K.C.; Adler, K.L, Remus, J.C, Calvert, C.C. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J. Nutr. 2002, 132, 2274–2282.
  • Ji, Y.; Gao, S.; Feng, X.; He, L. Calcium channel mechanism by which betaine promotes proliferation of lymphocytes in mice. Zhongguo Zhong Yao Za Zhi. 2009, 34, 1959–1963.
  • Chun, J.; Prince, A. Ca2+ signaling in airway epithelial cells facilitates leukocyte recruitment and transepithelial migration. J. Leukoc. Biol. 2009, 86, 1135–1144.
  • Peers, C.; Kang, P.; Boyle, J.P.; Porter, K.E.; Pearson, H.A.; Smith, I.F.; Kemp, P.J. Hypoxic regulation of Ca2+ signaling in astrocytes and endothelial cells. Novartis Found. Symp. 2006, 272, 119–127.
  • Rice, K.L.; Duane, P.G.; Mielke, G.; Sinha, A.A, Niewoehner, D.E. Calcium ionophores injure alveolar epithelial cells: Relation to phospholipase activity. Am. J Physiol. 1990, 259, 439–450.
  • Frandsen, A.; Schousboe, A. Excitatory amino acid-mediated cytotoxicity and calcium homeostasis in cultured neurons. J. Neurochem. 1993, 60, 1202–1211.
  • Rosa, R.; Sanfeliu, C.; Suñol, C.; Pomés, A.; Rodríguez-Farré, E.; Schousboe, A.; Frandsen, A. The mechanism for hexachlorocyclohexane-induced cytotoxicity and changes in intracellular Ca2+ homeostasis in cultured cerebellar granule neurons is different for the gamma- and delta-isomers. Toxicol. Appl. Pharmacol. 1997, 142, 31–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.