Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 5
359
Views
32
CrossRef citations to date
0
Altmetric
ARTICLES

Modeling and optimization of lime-based stabilization in high alkaline arsenic-bearing sludges with a central composite design

, , , , &
Pages 449-458 | Received 10 Aug 2016, Accepted 26 Oct 2016, Published online: 17 Jan 2017

References

  • Sullivan, C.; Tyrer, M.; Cheeseman, C.R.; Graham, N.J.D. Disposal of water treatment wastes containing arsenic – A review. Sci. Total. Environ. 2010, 408(8), 1770–1778.
  • Ettler, V.; Mihaljevic, M.; Sebek, O. Antimony and arsenic leaching from secondary lead smelter air-pollution-control residues. Waste Manage. Res. 2010, 28(7), 587–595.
  • Guo, X.J.; Wang, K.P.; He, M.C.; Liu, Z.W.; Yang, H.L.; Li, S.S. Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors. J. Environ. Sci.-China. 2014, 26(7), 1549–1556.
  • Xu, S.J.; Zheng, N.; Liu, J.S.; Wang, Y.; Chang, S.Z. Geochemistry and health risk assessment of arsenic exposure to street dust in the zinc smelting district, Northeast China. Environ. Geochem. Health 2013, 35(1), 89–99.
  • Halatek, T.; Sinczuk-Walczak, H.; Janasik, B.; Trzcinka-Ochocka, M.; Winnicka, R.; Wasowicz, W. Health effects and arsenic species in urine of copper smelter workers. J. Environ. Sci. Health. Part. A 2014, 49(7), 787–797.
  • Yang, K.; Im, J.; Jeong, S.; Nam, K. Determination of human health risk incorporating experimentally derived site-specific bioaccessibility of arsenic at an old abandoned smelter site. Environ. Res. 2015, 137, 78–84.
  • Singh, T.S.; Pant, K.K. Solidification/stabilization of arsenic containing solid wastes using portland cement, fly ash and polymeric materials. J. Hazard. Mater. 2006, 131(1–3), 29–36.
  • Shaw, J.K.; Fathordoobadi, S.; Zelinski, B.J.; Ela, W.P.; Saez, A.E. Stabilization of arsenic-bearing solid residuals in polymeric matrices. J. Hazard. Mater. 2008, 152(3), 1115–1121.
  • Shi, M.Q.; Liang, Y.J.; Chai, L.Y.; Min, X.B.; Zhao, Z.W.; Yang, S. Raman and FTIR spectra of modified iron phosphate glasses containing arsenic. J. Mol. Struct. 2015, 1081, 389–394.
  • Ke, Y.; Chai, L.Y.; Min, X.B.; Tang, C.J.; Chen, J.; Wang, Y.; Liang, Y.J. Sulfidation of heavy-metal-containing neutralization sludge using zinc leaching residue as the sulfur source for metal recovery and stabilization. Miner. Eng. 2014, 61, 105–112.
  • Yang, Z.H.; Liu, L.; Chai, L.Y.; Liao, Y.P.; Yao, W.B.; Xiao, R.Y. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate. Environ. Sci. Pollut. R. 2015, 22(16), 12624–12632.
  • Paktunc, D.; Bruggeman, K. Solubility of nanocrystalline scorodite and amorphous ferric arsenate: Implications for stabilization of arsenic in mine wastes. Appl. Geochem. 2010, 25(5), 674–683.
  • Kundu, S.; Gupta, A.K. Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic. J. Hazard. Mater. 2008, 153(1–2), 434–443.
  • Mendonca, A.A.; Galvao, T.C.B.; Lima, D.C.; Soares, E.P. Stabilization of arsenic-bearing sludges using lime. J. Mater. Civil. Eng. 2006, 18(2), 135–139.
  • Yoon, I.H.; Moon, D.H.; Kim, K.W.; Lee, K.Y.; Lee, J.H.; Kim, M.G. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J. Environ. Manage. 2010, 91(11), 2322–2328.
  • Bothe, J.V.; Brown, P.W. Arsenic immobilization by calcium arsenate formation. Environ. Sci. Technol. 1999, 33(21), 3806–3811.
  • Donahue, R.; Hendry, M.J. Geochemistry of arsenic in uranium mine mill tailings, Saskatchewan, Canada. Appl. Geochem. 2003, 18(11), 1733–1750.
  • Camacho, J.; Wee, H.Y.; Kramer, T.A.; Autenrieth, R. Arsenic stabilization on water treatment residuals by calcium addition. J. Hazard. Mater. 2009, 165(1–3), 599–603.
  • Ghosh, A.; Mukiibi, M.; Ela, W. TCLP underestimates leaching of arsenic from solid residuals under landfill conditions. Environ. Sci. Technol. 2004, 38(17), 4677–4682.
  • Kazi, T.G.; Jamali, M.K.; Kazi, G.H.; Arain, M.B.; Afridi, H.I.; Siddiqui, A. Evaluating the mobility of toxic metals in untreated industrial wastewater sludge using a BCR sequential extraction procedure and a leaching test. Anal. Bioanal. Chem. 2005, 383(2), 297–304.
  • Dundar, M.S.; Altundag, H.; Eyupoglu, V.; Keskin, C.S.; Tutunoglu, C. Determination of heavy metals in lower Sakarya river sediments using a BCR-sequential extraction procedure. Environ. Monit. Assess. 2012, 184(1), 33–41.
  • Jamali, M.K.; Kazi, T.G.; Afridi, H.I.; Arain, M.B.; Jalbani, N.; Memon, A.R. Speciation of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. J. Environ. Sci. Health. Part. A 2007, 42(5), 649–659.
  • Baskan, M.B.; Pala, A. Determination of arsenic removal efficiency by ferric ions using response surface methodology. J. Hazard. Mater. 2009, 166(2–3), 796–801.
  • Homayoonfal, M.; Khodaiyan, F.; Mousavi, M. Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: Effect of preparation conditions on emulsion stability. Food Chem. 2015, 174, 649–659.
  • Wang, L. Removal of Disperse Red dye by bamboo-based activated carbon: optimisation, kinetics and equilibrium. Environ. Sci. Pollut. R. 2013, 20(7), 4635–4646.
  • Li, H.S.; Zhou, S.Q.; Sun, Y.B.; Lv, J.A. Application of response surface methodology to the advanced treatment of biologically stabilized landfill leachate using Fenton's reagent. Waste Manage. 2010, 30(11), 2122–2129.
  • Tajernia, H.; Ebadi, T.; Nasernejad, B.; Ghafori, M. Arsenic removal from water by sugarcane bagasse: an application of response surface methodology (RSM). Water Air Soil Poll. 2014, 225(7), 2028.
  • Naseri, E.; Reyhanitabar, A.; Oustan, S.; Heydari, A.A.; Alidokht, L. Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma 2014, 232, 547–555.
  • Wu, Y.H.; Jin, Y.P.; Cao, J.L.; Yilihan, P.; Wen, Y.J.; Zhou, J.X. Optimizing adsorption of arsenic(III) by NH2-MCM-41 using response surface methodology. J. Ind. Eng. Chem. 2014, 20(5), 2792–2800.
  • Gula, C.B.; Simsek, E.B.; Duranoglu, D.; Beker, U. An experimental design approach for modeling As(V) adsorption from aqueous solution by activated carbon. Water Sci. Technol. 2015, 71(2), 203–210.
  • Hwang, J.H.; Han, D.W. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION). J. Environ. Sci. Health. Part A 2015, 50(13), 1307–1315.
  • US EPA. Method 1311, toxicity characteristic leaching procedure. Washington DC, 1992.
  • Baig, J.A.; Kazi, T.G.; Arain, M.B.; Shah, A.Q.; Sarfraz, R.A.; Afridi, H.I.; Kandhro, G.A.; Jamali, M.K.; Khan, S. Arsenic fractionation in sediments of different origins using BCR sequential and single extraction methods. J. Hazard. Mater. 2009, 167(1–3), 745–751.
  • Divsar, F.; Habibzadeh, K.; Shariati, S.; Shahriarinour, M. Aptamer conjugated silver nanoparticles for the colorimetric detection of arsenic ions using response surface methodology. Anal. Methods-UK 2015, 7(11), 4568–4576.
  • Mukherjee, D.; Mukherjee, A.; Kumar, B. Chemical fractionation of metals in freshly deposited marine estuarine sediments of Sundarban ecosystem, India. Environ. Geol. 2009, 58(8), 1757–1767.
  • Rieuwerts, J.S.; Farago, M.E.; Cikrt, M.; Bencko, V. Differences in lead bioavailability between a smelting and a mining area. Water Air Soil Poll. 2000, 122(1–2), 203–229.
  • Xie, X.D.; Min, X.B.; Chai, L.Y.; Tang, C.J.; Liang, Y.J.; Li, M.; Ke, Y.; Chen, J.; Wang, Y. Quantitative evaluation of environmental risks of flotation tailings from hydrothermal sulfidation-flotation process, Environ. Sci. Pollut. R. 2013, 20(9), 6050–6058.
  • Yin, D.X.; Wang, X.; Chen, C.; Peng, B.; Tan, C.Y.; Li, H.L. Varying effect of biochar on Cd, Pb and As mobility in a multi-metal contaminated paddy soil. Chemosphere 2016, 152, 196–206.
  • Liang, Y.J. Min, X.B. Chai, L.Y. Wang, M.; Liyang, W.J.; Pan, Q.L. Okido, M. Stabilization of arsenic sludge with mechanochemically modified zero valent iron. Chemosphere 2017, 168, 1142–1151.
  • Li, C.X.; Zhong, H.; Wang, S.; Xue, J.R. Leaching Behavior and Risk Assessment of Heavy Metals in a Landfill of Electrolytic Manganese Residue in Western Hunan, China. Hum. Ecol. Risk Assess. 2014, 20(5), 1249–1263.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.