Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 9
258
Views
13
CrossRef citations to date
0
Altmetric
Articles

Response of soil microbial communities to roxarsone pollution along a concentration gradient

, , , &
Pages 819-827 | Received 18 Sep 2016, Accepted 12 Dec 2016, Published online: 21 Feb 2017

References

  • Anderson, C. Arsenicals as Feed Additives for Poultry and Swine. Arsenic: Industrial, Biomedical, Environmental Perspectives. Van Nostrand Reinhold: New York, 1983.
  • Green, F.; Clausen, C.A. Copper tolerance of brown-rot fungi: Oxalic acid production in southern pine treated with arsenic-free preservatives. Int. Biodeter. Biodegr. 2005, 56, 75–79.
  • Shelver, W.L. Generation of antibody and development of an enzyme-linked immunosorbant assay for the feed additive roxarsone. Food Agr. Immunol. 2011, 22, 171–184.
  • Jackson, B.P.; Bertsch, P.M.; Cabrera, M.L.; Camberato, J.J.; Seaman, J.C.; Wood, C.W. Trace element speciation in poultry litter. J. Environ. Qual. 2003, 32, 535–540.
  • Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R.L. Environmental fate of roxarsone in poultry litter. I. degradation of roxarsone during composting. Environ. Sci. Technol. 2003, 37, 1509–1514.
  • Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Jay, A.G.; Reyes, S.A. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. Environ. Sci. Technol. 2006, 40(9), 2951–2957.
  • Stolz, J.F.; Perera, E.; Kilonzo, B.; Kail, B.; Crable, B.; Fisher, E.; Ranganathan, M.; Wormer, L.; Basu, P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ. Sci. Technol. 2007, 41(3), 818–823.
  • Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R.L. Photodegradation of roxarsone in poultry litter leachates. Sci. Total. Environ. 2003, 302, 237–245.
  • Cullen, W.R.; Reimer, K.J. Arsenic speciation in the environment. Chem. Rev. 1989, 89, 713–764.
  • Moody, J.P.; Williams, R.T. The metabolism of 4-hydroxy-3-nitrophenylarsonic acid in hens. Food Cosmet. Toxicol. 1964, 2, 707–715.
  • Jackson, B.P.; Bertsch, P.M. Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ. Sci. Technol. 2001, 35, 4868–4873.
  • Brown, B.L.; Slaughter, A.D.; Schreiber, M.E. Controls on roxarsone transport in agricultural watersheds. Appl. Geochem. 2005, 20, 123–133.
  • Morrison, J.L. Distribution of arsenic from poultry litter in broiler chickens, soil, and crops. J. Agr. Food Chem. 1969, 17, 1288–1290.
  • Fisher, D.J.; Yonkos, L.T.; Staver, K.W. Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environ. Sci. Technol. 2015, 49(4), 1999–2012.
  • Chen, D. The soil ecological toxicity of roxarsone, Dissertation, Yangzhou University, Yangzhou, China, 2007.
  • Wang, K.; Liao, X. Study on the distribution and migrating disciplinarian of arsenic around the pig farm. J. Domes. Ani. Ecol. 2005, 26(2), 29–32.
  • Wang, F.; Chen, Z.; Sun, Y.; Gao, Y.; Yu, J. Investigation on the pollution of organoarsenical additives to animal feed in the surroundings and farmland near hog farms. Acta Ecol. Sin. 2006, 26(1), 154–162.
  • Nachman, K.E.; Graham, J.P.; Price, L.B.; Silbergeld, E.K. Arsenic: A roadblock to potential animal waste management solutions. Environ. Health. Persp. 2005, 113, 1123–1124.
  • O'connor, R.; O'connor, M.; Irgolic, K.; Sabrsula, J.; Gürleyük, H.; Brunette, R.; Howard, C.; Garcia, J.; Brien, J.; Brien, J. Transformations, air transport, and human impact of arsenic from poultry litter. Environ. Forens. 2005, 6, 83–89.
  • Zhang, Z.; Fei, Y.; Guo, C.; Qian, Y.; Li, Y. Regional groundwater contamination assessment in the North China Plain. J. Jilin Univ. (Earth Science Edition) 2012, 42(5), 1456–1461.
  • Nachman, K.; Raber, G.; Francesconi, K.; Navas-Acien, A.; Love, D. Arsenic species in poultry feather meal. Sci. Total. Environ. 2012, 417, 183–188.
  • Shelver, W.L. Generation of antibody and development of an enzyme-linked immunosorbant assay for the feed additive roxarsone. Food Agr. Immunol. 2011, 22, 171–184.
  • Andra, S.S.; Makris, K.C.; Quazi, S.; Sarkar, D.; Datta, R.; Bach, S.B. Organocopper complexes during roxarsone degradation in wastewater lagoons. Environ. Sci. Pollut. R. 2010, 17(5), 1167–1173.
  • Yao, L.; Li, G.; Zhi, D.; Yang, B.; He, Z.; Zhou, C. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply. Environ. Toxicol. Chem. 2010, 29, 947–951.
  • Sierra-Alvarez, R.; Cortinas, I.; Field, J.A. Methanogenic inhibition by roxarsone (4-hydroxy-3-nitrophenylarsonic acid) and related aromatic arsenic compounds. J. Hazard. Mater. 2010, 175(1–3), 352–358.
  • Sun J. Chemical behavior and biological response of roxarsone in the soil, Dissertation. Shenyang Agriculture University, Shengyang, China, 2012.
  • Mafla, S.; Moraga, R.; León, C.G.; Guzmán-Fierro, V.G.; Yañez, J.; Smith, C.T.; Mondaca, M.A.; Campos, V.L. Biodegradation of roxarsone by a bacterial community of underground water and its toxic impact. World J. Microbiol. Biotechnol. 2015, 31, 1267–1277.
  • Guzmán-Fierro, V.G.; Moraga, R.; León, C.G.; Campos, V.L.; Smith, C.; Mondaca, M.A. Isolation and characterization of an aerobic bacterial consortium able to degrade roxarsone. Int. J. Environ. Sci. Te. 2015, 12, 1353–1362.
  • Liang, T.F.; Ke, Z.C.; Chen, Q.; Liu, L.; Chen, G.W. Degradation of roxarsone in a silt loam soil and its toxicity assessment. Chemosphere 2014, 112, 128–133.
  • Fu, Q.L.; He, J.Z.; Gong, H.; Blaney, L.; Zhou, D.M. Extraction and speciation analysis of roxarsone and its metabolites from soils with different physicochemical properties. J. Soils Sedim. 2016, 16, 1557–1568.
  • Gao, D.; Zhang, J.; Chen, T.B.; Zheng, G.D.; Liu, H.T. Research progress in mathematical model of organic matter biodegradation in aerobic composting process. China Water Wastewater 2010, 26(11), 153–156.
  • Zhang, Y.; Lashermes, G.; Houot, S. et al. Modelling of organic matter dynamics during the composting process. Waste Manage. 2012, 32(1), 19–30.
  • Liu, Z.; Lozupone, C.; Hamady, M.; Bushman, F.D.; Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res. 2007, 35(18), e120.
  • Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Microbiol. Biotechnol. 2009, 75, 7537–7541.
  • Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010, 7(5), 335–336.
  • Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27(16), 2194–2200.
  • Makris, K.C.; Quazi, S.; Punamiya, P.; Sarkar, D.; Datta, R. Fate of arsenic in swine waste from concentrated animal feeding operations. J. Environ. Qual. 2008, 37(4), 1626–1633.
  • Wang, H.J.; Gong, W.X.; Liu, R.P.; Liu, H.J.; Qu, J.H. Treatment of high arsenic content wastewater by a combined physical-chemical process. Colloids Surf. A 2011, 379 (1–3), 116–120.
  • Zhang, F.F.; Wang, W.; Yuan, S.J. Biodegradation and speciation of roxarsone in an anaerobic granular sludge system and its impacts. J. Hazard. Mater. 2014, 279, 562–568.
  • Jiang, Z.; Li, P.; Wang, Y.; Li, B.; Wang, Y. Effects of roxarsone on the functional diversity of soil microbial community. Int. Biodeter. Biodegr. 2013, 76, 32–35.
  • Zhang, W.; Xu, F.; Han, J.; Sun, Q.; Yang, K. Comparative cytotoxicity and accumulation of roxarsone and its photodegradates in freshwater Protozoan Tetrahymena thermophila. J. Hazard. Mater. 2015, 286, 171–178
  • Carlin, A.; Shi, W.; Dey, S.; Rosen, B.P. The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 1995, 177(4), 981–986
  • Diorio, C.; Cai, J.; Marmor, J.; Shinder, R.; DuBow, M. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J. Bacteriol. 1995, 177(8), 2050–2056
  • Cai, J.; Salmon, K.; DuBow, M.A. Chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 1998, 144(10), 2705–2713
  • Suzuki, K.; Wakao, N.; Kimura, T.; Sakka, K.; Ohmiya, K. Expression and regulation of the arsenic resistance operon of Acidiphilum multivorum AIU 301 plasmid pKW301 in Escherichia coli. Appl. Environ. Microbiol. 1998, 64(2), 411–418
  • Dopson, M.; Lindstrom, E.; Hallberg, K. Chromosomally encoded arsenical resistance of the moderately Thermophilic acidophile Acidithiobacillus caldus. Extremophiles 2001, 5(4), 247–255
  • Blum, J.S.; Bindi, A.B.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch. Microbiol. 1998, 171(1), 19–30.
  • Shivaji, S.; Suresh, K.; Chaturvedi, P.; Dube, S.; Sengupta, S. Bacillus arsenicus sp. nov. an arsenic-resistant bacterium isolated from a siderite concretion in West Bengal, India. Int. J. Syst. Evol. Microbiol. 2005, 55(3), 1123–1127.
  • Podder, M.S.; Majumder, C.B. Study of the kinetics of arsenic removal from wastewater using Bacillus arsenicus, biofilms supported on a Neem leaves/MnFe2O4 composite. Ecol. Eng. 2016, 88, 195–216.
  • Podder, M.S.; Majumder, C.B. Kinetic, mechanistic and thermodynamic studies of removal of arsenic using Bacillus arsenicus MTCC 4380 immobilized on surface of granular activated carbon/MnFe2O4 composite. Groundwater Sustainable Dev. 2016, s2–3, 53–72.
  • Haritash, A.K.; Kaushik, C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009, 169(1), 1–15.
  • Pepi, M.; Lobianco, A.; Renzi, M.; Perra, G.; Bernardini, E.; Marvasi, M.; Gasperini, S.; Volterrani, M.; Franchi, E.; Heipieper, H.J.; Focardi, S.E. Two naphthalene degrading bacteria belonging to the genera Paenibacillus and Pseudomonas isolated from a highly polluted lagoon perform different sensitivities to the organic and heavy metal contaminants. Extremophiles 2009, 13(5), 839–848.
  • Cébron, A.; Arsène-Ploetze, F.; Bauda, P.; Bertin, P.N.; Billard, P.; Carapito, C.; Devin, S.; Goulhen-Chollet, F.; Poirel, J.; Leyval, C. Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. Microb. Ecol. 2014, 67(1), 129–144.
  • Li, P.; Wang, Y.; Dai, X.; Zhang, R.; Jiang, Z.; Jiang, D.W.; Wang, S.; Jiang, H.C.; Wang, Y.X.; Dong, H.L. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS ONE 2015, 10(5), e0125844.
  • Liu, L.; Zhang, S.; Luo, M.; Wang, G. Genomic information of the arsenic-resistant bacterium Lysobacter arseniciresistens type strain ZS79 T and comparison of Lysobacter draft genomes. Stand. Genom. Sci. 2015, 10, 88.
  • Fisher, E.; Dawson, A.M.; Polshyna, G.; Lisak, J.; Crable, B.; Perera, E. Transformation of inorganic and organic arsenic by Alkaliphilus oremlandiisp. nov. Strain OhILAs. Ann. N. Y. Acad. Sci. 2008, 1125(1), 230–241.
  • Campos, V.L.; Valenzuela, C.; Yarza, P.; Kämpfer, P.; Vidal, R.; Zaror, C. Pseudomonas arsenicoxydans, sp nov. an arsenite-oxidizing strain isolated from the Atacama desert. Syst. Appl. Microbiol. 2010, 33(4), 193–197.
  • Valenzuela, C.; Moraga, R.; Leon, C.; Smith, C.T.; Mondaca, M.A.; Campos, V.L. Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application. Bull. Environ. Contam. Toxicol. 2015, 94(5), 667–673.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.