Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 8
139
Views
2
CrossRef citations to date
0
Altmetric
Articles

Removal of phenanthrene in aqueous solution containing photon competitors by TiO2–C–Ag film supported on fiberglass

, , , , , & show all
Pages 742-749 | Received 17 Nov 2016, Accepted 08 Feb 2017, Published online: 10 Apr 2017

References

  • Aeming, Q.; Chéron, C.; Delgenès, N.; Jimenez, J.; Houot, S.; Steyer, J.P.; Patureau, D. Distribution of polyciclic aromatic hydrocarbons (PAHs) in sludge organic matter pools as a driving force of their fate during anaerobic digestion. Waste Manag. 2016, 48, 389–396.
  • Fatta-Kassinos, D.; Kalavrouziotis, I.K.; Koukoulakis, P.H.; Vasquez, M.I. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci. Total Environ. 2011, 409, 3555–3563.
  • Blokker, E.J.; van de Ven, B.M.; de Jongh, C.M.; Slaats, P.G. Health implications of PAH release from coated cast iron drinking water distribution system in the Netherlands. Environ. Health Perspect. 2013, 121(5), 600–606.
  • Zheng, B.; Ma, Y.; Qin, Y.; Zhang, Y.; Cao, W.; Yang, C.; Han, C. Distribution, sources, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in surface water in industrial affected areas of the Three Gorges Reservoir, China. Environ. Sci. Pollut. Res. Int. 2016, 23, 23485–23495.
  • Jones, V.; Gardner, M.; Ellor, B. Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK. Chemosphere. 2014, 111, 478–484.
  • Zeng, X.; Lin, Z.; Gui, H.; Shao, W.; Sheng, G.; Fu, J.; Yu, Z. Occurrence and distribution of polycyclic aromatic carbons in sludges from wastewater treatment plants in Guangdong, China. Environ. Monit. Assess. 2010, 169, 89–100.
  • Sundararajan, S.; Karthikeyan, R.; Khadanga, M.K. Spatial distribution of polycyclic aromatic hydrocarbons in Ennore estuary and coastal water, Chennai, India. Asian J. Chem. 2016, 28, 35–38.
  • Jin, A.F.; He, J.T.; Chen, S.N.; Huang, G.X. Distribution and transport of PAHs in soil profiles of different water irrigation areas in Beijing, China. Environ. Sci. Impac. 2014, 16, 1526–1534.
  • Barnes, I.; Hjorth, J.; Mihalopoulos, N. Dimethyl sulphide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 2006, 106(3), 940–975.
  • Ivanković, T.; Hrenović, J. Surfactants in the environment. Arh. Hig. Toksikol. 2010, 61(1), 95–110.
  • Li, T.R.; Li, Y.W.; Bai, Z.Y.; Peng, X.C.; Zhong, Z.Q.; He, T. Application of nano-sized TiO2 in environmental protection. Appl. Mech. Mater. 2013, 295–298, 2227–2232.
  • Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986.
  • Sakkas, V.A.; Islam, Md.A.; Stalikas, C.; Albanis, T.A. Photocatalytic degradation using design of experiments: A review and example of the Congo red degradation. J. Hazard. Mater. 2010, 175, 33–44.
  • Guedes-Maniero, M.; Mia-Bila, D.; Dezotti, M. Degradation and estrogenic activity removal of 17 beta-estradiol and 17 alpha-ethinylestradiol by ozone and O3/H2O2. Sci. Total Environ. 2008, 407, 105–115.
  • Wang, G.; Wu, F.; Zhang, X.; Luo, M.; Deng, N. Enhanced TiO2 photocatalytic degradation of bisphenol A by β-cyclodextrin in suspended solutions. J. Photochem. Photobiol. A Chem. 2006, 179, 49–56.
  • Landmann, M.; Rauls, E.; Schmidt, W.G. The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys. Condens. Matter. 2012, 24, 195503.
  • Zhu, X.; Zhou, D.; Cang, L.; Wang, Y. TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants. J. Soils Sediments. 2012, 12, 376–385.
  • Valentin, C.D.; Fittipaldi, D. Hole Scavenging by organic adsorbates on the TiO2 surface: A DFT model study. J. Phys. Chem. Lett. 2013, 4, 1902–1906.
  • MacWan, D.P.; Nave, P.N.; Chaturvedi, S. A review on nano-TiO2 sol-gel type synthesis and its applications. J. Matter. Sci. 2011, 46, 3669–3686.
  • Kawahara, K.; Susuki, K.; Ohko, Y.; Tatsuma, T. Electron transport in silver-semiconductor nanocomposite films exhibiting multicolor photochromism. Phys. Chem. Phys. 2005, 7(22), 3851–3855.
  • Chen, Y.; Xie, Y.; Yang, J.; Cao, H.; Zhang, Y. Reaction mechanism and metal ion transformation in photocatalytic ozonation of phenol and oxalic acid with Ag+/TiO2. J. Environ. Sci. (China) 2014, 26, 662–672.
  • Yang, H.; Wang, Y.; Xue, X. Influences of glycerol as an efficient doping agent on crystal structure and antibacterial activity of B-TiO2 nano-materials. Coll. Surf. B Biointerf. 2014, 122, 701–708.
  • Liu, Z.; Fang, P.; Wang, S.; Gao, Y.; Chen, F.; Zheng, F.; Liu, Y.; Dai, Y. Photocatalytic degradation of gaseous benzene with CdS-sensitized TiO2 film coated on fiberglass cloth. J. Mol. Catal. A Chem. 2012, 363–364, 159–165.
  • Neville, E.M.; Mattle, M.J.; Loughrey, D.; Rajesh, B.; Rahman, M.; Don MacElry, J.M.; Sullivan, J.A.; Thampi, R. Carbon-doped TiO2 and carbon, tungsten-codoped TiO2 through sol-gel processes in the presence of melamine borate: reflections through photocatalysis. J. Phys. Chem. C. 2014, 116, 16511–16521.
  • Hassan, M.E.; Cong, L.; Liu, G.; Zhu, D.; Cai, J. Synthesis and characterization of C-doped TiO2 films for visible-light-induced photocatalytic degradation of methyl orange. Appl. Surf. Sci. 2014, 294, 89–94.
  • Liao, D.L.; Liao, B.Q. Shape, size and photocatalytic activity control of TiO2 nanoparticles with surfactants. J. Photochem. Photobiol. A. Chem. 2007, 187, 363–369.
  • Pal, M.; García-Serrano, J.; Santiago, P.; Pal, U. Size-controlled synthesis of spherical TiO2 nanoparticles: Morphology, crystallization, and phase transition. J. Phys. Chem. C. 2007, 111, 96–102.
  • Khanna, A.; Shetty, K.V. Solar light-driven photocatalytic degradation of anthraquinone dye-contaminated water by engineered Ag@TiO2 core shell nanoparticles. Desalin. Water Treat. 2014, 54, 744–757.
  • Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011, 56, 1636–1657.
  • Chen, D.A.; Bartelt, M.C.; Seutter, S.M. Small, uniform and thermally stable silver particles on TiO2(110)-(1× 1). Surf. Sci. 2000, 464(1), L708–L714.
  • Lai, Y.; Chen, Y.; Zhuang, H.; Lin, C. A facile method for synthesis of Ag/TiO2 nanostructures. Mater. Lett. 2008, 62, 3688–3690.
  • Mandal, S.S.; Bhattacharyya, A.J. Electrochemical sensing and photocatalysis using Ag–TiO2 microwires. J. Chem. Sci. 2012, 124, 969–978.
  • Chao, H.E.; Yun, Y.U.; Xingfang, H.U.; Larbot, A. Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Eur. Ceram. Soc. 2003, 23, 1457–1464.
  • De Lange, M.F.; Vlugt, T.J.H.; Gascon, J.; Kapteijn, F. Adsorptive characterization of porous solids: Error analysis guides the way. Micropor. Mesopor. Mater. 2014, 200, 199–215.
  • Zhao, B.; Chen, Y.W. Ag/TiO2 sol prepared by a sol-gel method and its photocatalytic activity. J. Phys. Chem. Solids. 2011, 72, 1312–1318.
  • Farkas, J.; Nizzetto, L.; Thomas, K.V. The binding of phenanthrene to engineering silver and gold nanoparticles. Sci. Total Environ. 2012, 425, 283–288.
  • Sirisaksoontorn, W.; Thachepan, S.; Songsasen, A. Photodegradation of phenanthrene by N-doped TiO2 photocatalyst. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2009, 44(9), 841–846.
  • Lin, H.F.; Valsaraj, K.Y. A titania thin film annular photocatalytic reactor for the degradation of polycyclic aromatic hydrocarbons in dilute water streams. J. Hazard. Mater. 2003, 99(2), 203–209.
  • Wang, X.; Ma, E.; Shen, X.; Guo, X.; Zhang, M.; Zhang, H.; Liu, Y.; Cai, F.; Tao, S.; Xing, B. Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles. Environ. Pollut. 2014, 194, 31–37.
  • Abellán, M.N.; Dillert, R.; Gimenéz, J.; Bahnemann, D. Evaluation of two types of TiO2-based catalyst by photodegradation of DMSO in aqueous suspension. J. Photochem. Photobiol. A Chem. 2009, 202(2–3), 164–171.
  • Romanovskaya, G.I.; Olenin, A.Y.; Vasil'eva, S.Y. Concentration of polycyclic aromatic hydrocarbons by chemically modified silver nanoparticles. Russ. J. Phys. Chem. A. 2011, 85, 274–278.
  • De Bruyn, W.J.; Clack, C.D.; Ottelle, K.; Aiona, P. Photochemical degradation of phenanthrene as a function of natural water variables modelling freshwater to marine environments. Mar. Pollut. Bull. 2012, 64, 532–538.
  • Wang, Z.; Liu, J.; Dai, Y.; Dong, W.; Zhang, S.; Chen, J. Dimethyl sulphide photocatalytic degradation in a light-emitting-diode continuous reactor: Kinetic and mechanistic study. Ind. Eng. Chem. Res. 2011, 50, 7977–7984.
  • Zhou, J.; Liu, L.; Wang, Y.; Ma, C.; Zou, Z. One-pot synthesis of bifunctionalized TiO2 mesoporous photocatalyst with visible light response. J. Porous Mater. 2015, 22, 313–319.
  • NIST X-ray Photoelectron Spectroscopy Database Version 4.1 (National Institute of Standards and Technology, Gaithersburg, 2012). Available at http://srdata.nist.gov/xps/ ( accessed Sep 2012).
  • Ren, M.; Wang, X.; Dong, C.; Li, B.; Liu, Y.; Chen, T.; Wu, P.; Cheng, Z.; Liu, X. Reduction and transformation of fluorinated graphene induced by untraviolet irradiation. Phys. Chem. Chem. Phys. 2015, 17(37), 24056–24062.
  • Calderon, V.S.; Galindo, R.E.; Benito, N.; Palacio, C.; Cavaleiro, A.; Carvalho, S. Ag+ release inhibition from ZrCN-Ag coating by surface agglomeration mechanism: structural characterization. J. Phys. D. Appl. Phys. 2013, 46(32), 325–303.
  • Ferraria, A.M.; Carapeto, A.P.; Botelho Do Rego, A.M. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum. 2012, 86, 1988–1991.
  • Shin, H.S.; Choi, H.C.; Jung, Y.; Kim, S.B.; Song, H.J.; Shin, H.J. Chemical and size effects of nanocomposites of silver and polyvinyl pyrrolidone determines by X-ray photoemission spectroscopy. Chem. Phys. Lett. 2004, 383, 418–422.
  • Henglein, A.; Mulvaney, P.; Linnert, T. Chemistry of Agn aggregates in aqueous solution: non-metallic oligomeric clusters and metallic particles. Faraday Discuss. 1991, 92, 31–44.
  • Chuang, H.Y.; Chen, D.H. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology. 2009, 20(10), 105704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.