Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
189
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption characteristics of trace levels of bromate in drinking water by modified bamboo-based activated carbons

, , &
Pages 1055-1062 | Received 31 Mar 2017, Accepted 24 May 2017, Published online: 07 Aug 2017

References

  • Butler, R.; Godley, A.; Lytton, L.; Cartmell, E. Bromate environmental contamination: review of impact and possible treatment. Crit. Rev. Envrion. Sci. Technol. 2005, 35, 193–217.
  • Bonacquisti, T.P.A. Drinking water utility's perspective on bromide, bromate, and ozonation. Toxicology 2006, 221, 145–148.
  • Bull, R.J.; Cotruvo, J.A. Nongenotoxic mechanisms involved in bromate-induced cancer in rats. J. Am. Water Works Assoc. 2013, 105, E709–E720.
  • WHO. Bromate in drinking water, Background document for of WHO Guidelines for Drinking-water Quality. 2005, 4–10.
  • EUC directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. 1998.
  • USEPA. National primary drinking water regulations: stage 2 disinfectants and disinfection by products rule. Federal Register 2006, 71, 388–493.
  • GB5749–2006. P.R. China Standards for Drinking Water Quality. Beijing: Department of Health, P.R. China, 2006.
  • WHO. Guidelines for Drinking-water Quality, 4th ed.; World Health Organization, Geneva, Switzerland, 2011.
  • CDW. Guidelines for Canadian Drinking Water Quality Summary Table; Committee on Drinking Water of the of the Federal-Provincial-Territorial Committee on Health and the Environment, Canada, 2012.
  • Song, R.; Minear, R.; Westerhoff, P.; Amy, G. Bromate formation and control during water ozonation. Environ. Technol. 1996, 17, 861–868.
  • Wang, L.; Zhang, J.; Liu, J.; He, H.; Yang, M.; Yu, J.; Ma, Z.; Jiang, F. Removal of bromate ion using powdered activated carbon. J. Environ. Sci. 2010, 22, 1846–1853.
  • Ma, W.; Meng, F.; Cheng, Z.; Sha, X.; Xin, G.; Tan, D. Synthesized of macroporous composite electrode by activated carbon fiber and Mg–Ca–Al (NO3) hydrotalcite-like compounds to remove bromated. Colloid Surf. A 2015, 481, 393–399.
  • Xu, J.H.; Gao, N.Y.; Zhao, D.Y.; Yin, D.Q.; Zhang, H.; Gao, Y.Q.; Shi, W. Comparative study of nano-iron hydroxide impregnated granular activated carbon (Fe–GAC) for bromate or perchlorate removal. Sep. Purif. Technol. 2015, 147, 9–16.
  • Yang, Q.; Zhong, Y.; Li, X.; Li, X.; Luo, K.; Wu, X.; Chen, H.; Liu, Y.; Zeng, G. Adsorption-coupled reduction of bromate by Fe(II)–Al(III) layered double hydroxide in fixed-bed column: Experimental and breakthrough curves analysis. J. Ind. Eng. Chem. 2015, 28, 54–59.
  • Tawabini, B.; Zubair, A. Bromate control in phenol-contaminated water treated by UV and ozone processes. Desalination 2011, 267, 16–19.
  • Bahngmi, J.; Rana, N.; Bill, B.; Ahmed, A.W. Effect of low- and medium-pressure Hg UV irradiation on bromate removal in advanced reduction process. Chemosphere 2014, 117, 663–672.
  • Chen, R.; Yang, Q.; Zhong, Y.; Li, X.; Liu, Y.; Li, X.M.; Du, W.X.; Zeng, G. M. Sorption of trace levels of bromate by macroporous strong base anion exchange resin: Influencing factors, equilibrium isotherms and thermodynamic studies. Desalination 2014, 344, 306–312.
  • Wis´niewski, J.A.; Kabsch-Korbutowicz, M.; Łakomska, S. Removal of bromate ions from water in the processes with ion-exchange membranes. Sep. Purif. Technol. 2015, 145, 75–82.
  • Liu, J.; Yu, J.; Li, D.; Zhang, Y.; Yang, M. Reduction of bromate in a biological activated carbon filter under high bulk dissolved oxygen conditions and characterization of bromate-reducing isolates. Biochem. Eng. J. 2012, 65, 44–50.
  • Palomares, G.A.E.; Franch, M. C.; Yuranova, T.; Kiwi-Minsker, L.; Garcia, B.J.E.; Derrouiche, S. The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Appl. Catal. B-Environ. 2014, 146, 186–191.
  • Restivo, J.; Soares, O.S.G.P.; Órfão, J.J.M.; Pereira, M.F.R. Bimetallic activated carbon supported catalysts for the hydrogenreduction of bromate in water. Catal. Today 2015, 249, 213–219.
  • Figueiredo, J.L.; Pereira, M.F.R.; Freitas, M.M.A.; Orfao, J.J.M. Modification of the surface chemistry of activated carbons. Carbon 1999, 37, 1379–1389.
  • Wibowo, N.; Setyadhi, L.; Wibowo, D.; Setiawan, J.; Ismadji, S. Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption. J. Hazard. Mater. 2007, 146, 237–242.
  • Ania, C.O.; Cabal, B.; Pevida, C.; Arenillas, A.; Parra, J.B.; Rubiera, F.; Pis, J.J. Removal of naphthalene from aqueous solution on chemically modified activated carbons. Water Res. 2007, 41, 333–340.
  • Ge, X.; Tian, F.; Wu, Z.; Yan, Y.; Cravotto, G.; Wu, Z. Adsorption of naphthalene from aqueous solution on coal-based activated carbon modified by microwave induction: Microwave power effects. Chem. Eng. Process. 2015, 91, 67–77.
  • Biniak, S.; Pakuła, M.; Szymański, G.S.; Świa̧tkowski, A. Effect of activated carbon surface oxygen- and/or nitrogen-containing groups on adsorption of copper(II) ions from aqueous solution. Langmuir 1999, 15, 6117–6122.
  • Xu, T.; Liu, X. Peanut shell activated carbon: Characterization, surface modification and adsorption of Pb2+ from aqueous solution. Chin. J. Chem. Eng. 2008, 16, 401–406.
  • Mahaninia, M.H.; Esfandiari, A.; Kaghazchi, T.; Asasian, N. Effect of pre-oxidation for introduction of nitrogen containing functional groups into the structure of activated carbons and its influence on Cu (II) adsorption. J. Taiwan Inst. Chem. Eng. 2012, 43, 736–740.
  • Mahaninia, M.H.; Rahimian, P.; Kaghazchi, T. Modified activated carbons with amino groups and their copper adsorption properties in aqueous solution. Chinese J. Chem. Eng. 2015, 23, 50–56.
  • Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J. 2013, 219, 499–511.
  • Edward, L.K.; Mui, W.H.; Cheung, V.K.C.; Lee, G.M. Kinetic study on bamboo pyrolysis. Ind. Eng. Chem. Res. 2008, 47, 5710–5722.
  • Zhao, R.S.; Yuan, J.P.; Jiang, T.; Shi, J.B.; Cheng, C.G. Application of bamboo charcoal assolid-phase extraction adsorbent for the determination of atrazine and simazinein environmental water samples by high-performance liquid chromatography–ultraviolet detector. Talanta 2008, 76, 956–959.
  • Wang, S.Y.; Tsai, M.H.; Lo, S.F.; Tsai, M.J. Effects of manufacturing conditions on the adsorption capacity of heavy metal ions by Makino bamboo charcoal. Bioresour. Technol. 2008, 99, 7027–7033.
  • Wang, F.Y.; Wang, H.; Ma, J.W. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. J. Hazard. Mater. 2010, 177, 300–306.
  • Lalhruaitluanga, H.; Jayaram, K.; Prasad, M.N.V.; Kumar, K.K. Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)- A comparative study. J. Hazard. Mater. 2010, 175, 311–318.
  • Takashi, A.; Takashi, O.; Kuniaki, K.; Kikuo, O. Ammonia adsorption on bamboo charcoal with acid treatment. J. Health Sci. 2006, 52, 585–589.
  • Edward, L.K.; Mui, W.H.; Cheung, M.V.; Gordon, M. Dye adsorption onto char from bamboo. J. Hazard. Mater. 2010, 177, 1001–1005.
  • Hameed, B.H.; EI-Khaiary, M.I. Adsorption of methylene blue onto bamboo- based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 2007, 141, 819–825.
  • Ahmad, A.A.; Hameed, B.H. Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J. Hazard. Mater. 2010, 175, 298–303.
  • Dollimore, D.; Heal, G.R. An improved method for the calculation of pore size distribution from adsorption data. J. Appl. Chem. 1964, 14, 109–114.
  • Lippens, B.C.; de Boer, J.H. Pore system n catalysts V: the t-method. J. Catal. 1965, 4, 319–323.
  • Dubinin, M.M.; Astakhov, V.A. Description adsorption equilibria of vapors on zeolites over wide ranges of temperature and pressure. Adv. Chem. Ser. 1971, 102, 69–85.
  • Barton, S.S.; Evans, M.J.B.; Halliop, E.; MacDonald, J.A.F. Acidic and basic sites on the surface of porous carbon. Carbon 1997, 35, 1361–1366.
  • Carlos, M.C.; Agustin, F.P.C.; Francisco, Jr. M.H.; Francisco, C.M.; Fierro, J.L.G. Influence of carbon-oxygen surface complexes on the surface acidity of tungsten oxide catalysts supported on activated carbon. Carbon 2003, 41, 1157–1167.
  • Wang, G.X.; Han, H.; Li, L.W.; Quan, H.Y.; Shi, Y.P.; Qin, W.Z.; Lu, P.; Wu, Q.L. SEM and AFM studies on the surface and cross section morphology of rayon-based activated carbon fibers. Mater. Sci. Forum 2011, 689, 413–418.
  • Brasqueta, C.; Rousseau. B.; Estrade-Szwarckopf, H.; Cloirec, P.L. Observation of activated carbon fibres with SEM and AFM correlation with adsorption data in aqueous solution. Carbon 2000, 38, 407–422.
  • Gao, Z.; Bandosz, T.J.; Zhao, Z.; Han, M.; Liang, C.; Qiu, J. Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open–surface carbonaceous materials. Langmuir 2008, 24, 11701–11710.
  • Wang, L.; Zhang, J.; Liu, J.; He, H.; Yang, M.; Yu, J.; Ma, Z.; Jiang, F. Removal of bromate ion using powdered activated carbon. J. Environ. Sci. 2010, 22, 1846–1853.
  • Huang, X.; Gao, N.Y.; Lu, P.P. Bromate reduction by granular activated carbon. Environ. Sci. 2007, 28, 2264–2269.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.