Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
291
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105

, , , , &
Pages 1099-1111 | Received 27 Mar 2017, Accepted 25 May 2017, Published online: 01 Aug 2017

References

  • Ortiz, E.J.E., Rene, E.R., Pakshirajan, K., Hullebusch, D.V., Lens, P.N.L. Fungal pelleted reactors in wastewater treatment. Chem. Eng. J. 2016, 283, 553–571.
  • Livernoche, D., Jurasek, L., Desrochers, M., Veliky, I.A. Decolorization of a kraft mill effluent with fungal mycelium immobilized in calcium alginate gel. Biotechnol. Lett. 1981, 12(3), 701–706.
  • Eaton, D., Chang, H.M., Kirk, T.K. Fungal decolorization of kraft bleach plant effluents. J. Tappi. 1980, 63, 103–106.
  • Chagas, E.P., Durrant, L.R. Decolorization of azo dyes by Phanerochaete chrysosporium and Pleurotus sajorcaju. Enzyme Microb. Technol. 2001, 29(8), 473–477.
  • Yang, X.Q., Zhao, X.X., Liu, C.Y., Zheng, Y., Qian, S.J. Decolorization of azo, triphenyl methane and anthraquinone dyes by a newly isolated Trametes sp. SQ01 and its laccase. Process. Biochem. 2009, 44(10), 1185–1189.
  • Svobodová, K., Senholdt, M., Novotný, Č., Rehorek, A. Mechanism of reactive orange 16 degradation with the white rot fungus Irpex lacteus. Process. Biochem. 2007, 42(9), 1279–1284.
  • Palmieri, G., Cennamo, G., Sannia, G. Remazol brilliant blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb. Technol. 2005, 36(1), 17–24.
  • Heinfling, A., Bergbauer, M., Szewzyk, U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 1997, 48(2), 261–266.
  • Eichlerova, I., Homolka, L., Nerud, F. Decolorization of high concentrations of synthetic dyes by the white rot fungus Bjerkandera adusta strain CCBAS 232. Dyes Pigment. 2007, 75(1), 38–44.
  • Braun, S., Lifshitz, S.E.V. Mycelial morphology and metabolite production. Trends Biotechnol. 1991, 9(2), 63–68.
  • Park, J. P., Kim, Y.M., Kim, S.W., Hwang, H. J., Cho, Y.J., Lee, Y.S., Song, C.H., Yun, J.W. Effect of agitation intensity on the exo‐biopolymer production and mycelial morphology in Cordyceps militaris. Lett. Appl. Microbiol. 2002, 34(6), 433–438.
  • Babič, J., Pavko, A. Enhanced enzyme production with the pelleted form of D. squalens in laboratory bioreactors using added natural lignin inducer. J. Ind. Microbiol. Biotechnol. 2012, 39(3), 449–457.
  • Moreira, M., Feijoo, G., Lema, J. Fungal bioreactors: applications to white-rot fungi. Rev. Environ. Sci. Bio-Technol. 2003, 2, 247–259.
  • Porcel, E.M.R., Casas Lopez, J.L., Sanchez Perez, J.A., Chisti, Y. Enhanced production of lovastatin in a bubble column by Aspergillus terreus using a two‐stage feeding strategy. J. Chem. Technol. Biotechnol. 2007, 82(1), 58–64.
  • Glicksman, L.R. Fluidized bed scale-up. In Fluidization, Solids Handling, and Processing: Industrial Applications, Yang, W.C., Ed., Noyes Publications: New Jersey, USA, 1998, 1–110.
  • Fontana, R.C., da Silveira, M.M. Production of polygalacturonases by Aspergillus oryzae in stirred tank and internal-and external-loop airlift reactors. Bioresour. Technol. 2012, 123, 157–163.
  • Merchuk, J.C., Garcia Camacho, F. Bioreactors: airlift reactors. In Encyclopedia of Industrial Biotechnology, Flickinger, M.C., Ed., John Wiley & Sons, Inc.: Hoboken, NJ, 1999, 887–953.
  • Issakainen, J., Jalava, J., Saari, J., Campbell, C. Relationship of Scedosporium prolificans with Petriella confirmed by partial LSU rDNA sequences. Mycol. Res. 1999, 103(9), 1179–1184.
  • Bourbonnais, R., Paice, M.G., Reid, I.D., Lanthier, P., Yaguchi, M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 1995, 61(5), 1876–1880.
  • Kaal, E.E., de Jong, E., Field, J.A. Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white rot fungus Bjerkandera sp. Strain BOS55. Appl. Environ. Microbiol. 1993, 59(12), 4031–4036.
  • Tien, M., Kirk, T.K. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol. 1988, 161, 238–249.
  • Thorn, R.G., Reddy, C.A., Harris, D., Paul, E.A. Isolation of saprophytic basidiomycetes from soil. Appl. Environ. Microbiol. 1996, 62 (11), 4288–4292.
  • Eriksson, K.E.L., Blanchette, R.A., Ander, P. Microbial and Enzymatic Degradation of Wood and Wood Components, Springer Series in Wood Science: New York, NY, 1990, 30–50.
  • Field, J.A., de Jong, E., Feijoo Costa, G., de Bont, J.A. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. Environ. Microbiol. 1992, 58(7), 2219–2226.
  • Kaal, E.E., Field, J.A., Joyce, T.W. Increasing ligninolytic enzyme activities in several white-rot basidiomycetes by nitrogen-sufficient media. Bioresour. Technol. 1995, 53(2), 133–139.
  • Mester, T., Tien, M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 2000, 46(1), 51–59.
  • Niladevi, K. N. Ligninolytic enzymes. In Biotechnology for Agro-Industrial Residues Utilization, Singh-Nee, N., Pandey, A., Eds, Springer Netherlands: Dordrecht, Netherlands, 2009, 397–414.
  • Conneely, A., Smyth, W.F., Mcmullan, G. Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium. FEMS Microbiol. Lett. 1999, 179(2), 333–337.
  • Sharma, P., Singh, L., Dilbaghi, N. Response surface methodological approach for the decolorization of simulated dye effluent using Aspergillus fumigatus fresenius. J. Hazard. Mater. 2009, 161(2), 1081–1086.
  • Park, C., Lee, M., Lee, B., Kim, S.W., Chase, H.A., Lee, J., Kim, S. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochem. Eng. J. 2007, 36(1), 59–65.
  • Máximo, C., Costa-Ferreira, M. Decolourisation of reactive textile dyes by Irpex lacteus and lignin modifying enzymes. Process. Biochem. 2004, 39(11), 1475–1479.
  • Aravindhan, R., Rao, J., Nair, B.U. Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J. Hazard. Mater. 2007, 142(1), 68–76.
  • Kumar, K., Devi, S.S., Krishnamurthi, K., Dutta, D., Chakrabarti, T. Decolorisation and detoxification of direct blue-15 by a bacterial Consortium. Bioresour. Technol. 2007, 98(16), 3168–3171.
  • Singh, R.L., Singh, P.K., Singh, R.P. Enzymatic decolorization and degradation of azo dyes–a review. Int. Biodeterior. Biodegrad. 2015, 104, 21–31.
  • Singh, H. Mycoremediation: Fungal Bioremediation, John Wiley & Sons: New Jersey/Canada, 2006, 10–60.
  • Younes, S.B., Cherif, I., Dhouib, A., Sayadi, S. Trametes trogii: A biologic powerful tool for dyes decolorization and detoxification. Catal. Lett. 2016, 146(1), 204–211.
  • Cripps, C., Bumpus, J.A., Aust, S.D. Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Eenviron. Microbiol. 1990, 56(4), 1114–1118.
  • Rodriguez, E., Pickard, M.A., Duhalt, R.V. Industrial dye decolorization by laccases from ligninolytic fungi. Curr. Microbiol. 1999, 38(1), 27–32.
  • Ge, Y., Yan, L., Qinge, K. Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor. Process. Biochem. 2004, 39(11), 1401–1405.
  • Nilsson, I., Möller, A., Mattiasson, B., Rubindamayugi, M.S.T., Welander, U. Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Technol. 2006, 38(1), 94–100.
  • Malachova, K., Rybkova, Z., Sezimova, H., Cerven, J., Novotny, C. Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Res. 2013, 47(19), 7143–7148.
  • Pazarlioglu, N.K., Urek, R.O., Ergun, F. Biodecolourization of direct blue 15 by immobilized Phanerochaete chrysosporium. Process. Biochem. 2005, 40(5), 1923–1929.
  • Novotný, Č., Svobodová, K., Kasinath, A., Erbanová, P. Biodegradation of synthetic dyes by Irpex lacteus under various growth conditions. Int. Biodeterior. Biodegrad. 2004, 54 (2), 215–223.
  • Couto, S.R., Rodríguez, A., Paterson, R.R.M., Lima, N., Teixeira, J.A. Laccase activity from the fungus Trametes hirsuta using an air‐lift bioreactor. Lett. Appl. Microbiol. 2006, 42(6), 612–616.
  • Andleeb, S., Atiq, N., Robson, G.D., Ahmed, S. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environ. Sci. Pollut. Res. 2012, 19(5), 1728–1737.
  • Cheng, Z., Hua, W.X., Ping, N. Continuous acid blue 45 decolorization by using a novel open fungal reactor system with ozone as the bactericide. Biochem. Eng. J. 2013, 79, 246–252.
  • Karimi, A., Vahabzadeh, F., Bonakdarpour, B. Use of Phanerochaete chrysosporium immobilized on kissiris for synthetic dye decolourization: involvement of manganese peroxidase. World J. Microbiol. Biotechnol. 2006, 22(12), 1251–1257.
  • Kim, T., Lee, Y., Yang, J., Lee, B., Park, C., Kim, S. Decolorization of dye solutions by a membrane bioreactor (MBR) using white-rot fungi. Desalination 2004, 168, 287–293.
  • Knapp, J.S., Zhang, F., Tapley, K.N. Decolourisation of orange II by a wood‐rotting fungus. J. Chem. Technol. Biotechnol. 1997, 69(3), 289–296.
  • Panswad, T., Luangdilok, W. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res. 2000, 34(17), 4177–4184.
  • Barclay, C.D., Moore, D.M., Lander, S.R., Legge, R.L. Heat-denaturation kinetics of lignin peroxidases from Phanerochaete chrysosporium. Enzyme Microb. Technol. 1990, 12(10), 778–782.
  • Barr, D.P., Aust, S.D. Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 1994, 28, 78A–87A.
  • Nagai, M., Sato, T., Watanabe, H., Saito, K., Kawata, M., Enei, H. Purification and characterization of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes. Appl. Microbiol. Biotechnol. 2002, 60(3), 327–335.
  • Kamitsuji, H., Honda, Y., Watanabe, T., Kuwahara, M. Mn2+ is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem. Biophys. Res. Commun. 2005, 327(3), 871–876.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.