Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 11
299
Views
39
CrossRef citations to date
0
Altmetric
Original Articles

Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles

ORCID Icon, ORCID Icon, &
Pages 1112-1120 | Received 25 Feb 2017, Accepted 25 May 2017, Published online: 01 Aug 2017

References

  • Birla, S.S.; Gaikwad, S.C.; Gade, A.K.; Rai, M.K. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci. World J. 2013, 1, 1–12.
  • Kumar, P.; Selvi, S.S.; Prabha, A.L.; Kumar, K.P.; Ganeshkumar, R.S.; Govindaraju, M. Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomed. Eng. 2012, 4, 12–16.
  • Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotech. Adv. 2009, 27, 76–83.
  • Knetsch, M.L.W.; Koole, L.H. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers. 2011, 3, 340–366.
  • Sheng, Z.; Liu, Y. Effects of silver nanoparticles on wastewater biofilms. Water Res. 2011, 45, 6039–6050.
  • Chladek, G.; Mertas, A.; Barszczewska-Rybarek, I.; Nalewajek, T.; Żmudzki, J.; Król, W.; Łukaszczyk, J. Antifungal activity of denture soft lining material modified by silver nanoparticles – A pilot study. J. Int. J. Mol. Sci. 2011, 12, 4735–4744.
  • Kokura, S.; Honda, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Ag nanoparticles as a safe preservative for use in cosmetics. Nanomedicine. 2010, 6, 570–574.
  • Sawant, P.D.; Sabri, Y.M.; Ippolito, S.J.; Bansal, V.; Bhargava, S.K. In-depth nano-scale analysis of complex interactions of Hg with gold nanostructures using AFM-based power spectrum density method. Phys. Chem. Chem. Phys. 2009, 11, 2374–2378.
  • Schmid, G.; Corain, B. Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur. J. Inorg. Chem. 2003, 17, 3081–3098.
  • Cao, Y.C.; Jin, R.; Mirkin, C.A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002, 297, 1536–1540.
  • Plowman, B.; Ippolito, S.J.; Bansal, V.; Sabri, Y.M.; O'Mullane, A.P.; Bhargava, S.K. Gold nanospikes formed through a simple electrochemical route with high electrocatalytic and surface enhanced Raman scattering activity. Chem. Commun. 2009, 33, 5039–5041.
  • Kang, B.; Mackey, M.A.; El-Sayed, M.A. Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J. Am. Chem. Soc. 2010, 132, 1517–1519.
  • Bansal, V.; Li, V.; O'Mullane, A.P.; Bhargava, S.K. Shape dependent electrocatalytic behaviour of silver nanoparticles. Cryst. Eng. Commun. 2010, 12, 4280–4286.
  • Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.
  • Smith, I.C.; Carson, B.L. Silver. In Trace Metals in the Environment, Smith, I.C., Carson, B.L., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, UK, 1977, 469.
  • Kitching, M.; Ramani, M.; Marsili, E. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb. Biotechnol. 2015, 8, 904–917.
  • Shroff, K.A.; Vaidya, V.K. Kinetics and equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chem. Eng. J. 2011, 171, 1234–1245.
  • Anand, P.; Isar, J.; Saran, S.; Saxena, R.K. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol. 2006, 97, 1018–1025.
  • Varshney, R.; Bhadauria, S.; Gaur, M.S. A review: Biological synthesis of silver and copper nanoparticles. Nano Biomed. Eng. 2012, 4, 99–106.
  • Kowshik, M.; Ashtaputre, S.; Kulkarni, S.K.; Parknikar, K.M.M. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003, 14, 95–100.
  • Lim, H.A.; Mishra, A.; Yun, S.I. Effect of pH on the Extra Cellular Synthesis of Gold and Silver Nanoparticles by Saccharomyces Cerevisae. J. Nanosci. Nanotechnol. 2011, 11, 518–522.
  • Mishra, A.; Tripathy, S.K.;  , S., Yun, I. Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J. Nanosci. Nanotechnol. 2011, 11, 243–248.
  • Salvadori, M.R.; Ando, R.A.; Nascimento, C.A.O.; Corrêa, B. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. Plos ONE. 2014, 9, 1–9.
  • Salvadori, M.R.; Ando, R.A.; Muraca, D.; Knobel, M.; Nascimento, C.A.O.; Corrêa, B. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv. 2016, 6, 60683–60692.
  • Machado, M.D.; Soares, E.V.; Soares, H.M.V.M. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: Chemical Speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J. Hazard. Mater. 2010, 180, 347–353.
  • Ting, A.S.Y.; Choong, C.C. Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu(II)) from aqueous solutions. World J. Microbiol. Biotechnol. 2009, 25, 1431–1437.
  • Malik, P.K. Dye removal from wastewater using activated carbon developed from sawdust: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2004, 113, 81–88.
  • Kapoor, A.; Viraraghavan, T. Fungal biosorption – An alternative treatment option for heavy metal bearing wastewaters: A review. Bioresour. Technol. 1995, 53, 195–206.
  • Merrin, J.S.; Sheela, R.; Saswathi, N.; Prakasham, R.S.; Ramakrishna, S.V. Biosorption of chromium (VI) using Rhizopus arrhizus. Ind. J. Exp. Biol. 1998, 36, 1052–1055.
  • Kogej, A.; Pavko, A. Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column. Chem. Biochem. Eng. 2001, 15, 75–79.
  • Salvadori, M.R.; Lepre, L.F.; Ando, R.A.; Nascimento, C.A.O.; Corrêa, B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. Plos ONE. 2013, 8, 1–8.
  • Salvadori, M.R.; Ando, R.A.; Nascimento, C.A.O.; Corrêa, B. Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J. Environ. Sci. Health Part A. 2014, 49, 1286–1295.
  • Karman, S.B.; Diah, S.Z.M.; Gebeshuber, I.C. Raw materials synthesis from have metals industry effluents with bioremediation and phytomining: A biomimetic resource management approach. Adv. Mat. Sci. Eng. 2015, 1, 1–21.
  • Salvadori, M.R.; Ando, R.A.; Nascimento, C.A.O.; Corrêa, B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. Plos ONE. 2015, 1–15.
  • Mullen, M.D.; Wolf, D.C.; Beveridge, T.J.; Bailey, G.W. Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii. Soil Biol. Biochem. 1992, 24, 129–135.
  • Chen, J.C.Z.; Lin, H.; Ma, X.X. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett. Appl. Microbiol. 2003, 37, 105–108.
  • Korenevskii, A.A.; Khamidova, K.H.; Avakyan, Z.A.; Karavaiko, G.I. Silver biosorption by micromycetes. Microbiology. 1999, 68, 139–145.
  • Herrera, I.; Gardea-Torresdey, J.L.; Tiemann, K.J.; Peralta-Videa, J.R.; Armendariz, V.; Parsons, J.G. Binding of silver(I) ions by alfalfa biomass (Medicago sativa): Batch pH, time, temperature, and ionic strength studies. J. Hazard. Substance Res. 2003, 4, 1–16.
  • Mattuschka, B.; Junghaus, K.; Straube, G. Biosorption of metals by waste biomass. In Biohydrometallurgical Technologies; Toma, A.E., Apel, M.L., Brierley, C.L. Eds.; The Minerals, Metals and Materials Society, Warrendale: Pennsylvania, 1993, 125–132.
  • Brady, D.; Duncan, J.R. Bioaccumulation of metal cations by Saccharomyces cerevisiae. In Biohydrometallurgical Technologies; Toma, A.E., Apel, M.L., Brierley, C.L. Eds.; The Minerals, Metals and Materials Society, Warrendale: Pennsylvania, 1993, 711.
  • Singh, P.; Kim, Y.J.; Sing, H.; Wang, C.; Hwang, K.H.; El-Agamy Farh, M.; Yang, D.C. Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles. Int. J. Nanomed. 2015, 10, 2567–2577.
  • Balaji, D.S.; Basavaraja, S.; Deshpande, R.; Mahesh, D.; Prabhakar, B.K.; Venkataraman, A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Coll. Surf. B Biointerf. 2009, 68, 88–92.
  • Vidhu, V.K.; Aromal, S.; Philip, D. Green synthesis of silver nanoparticles using Macrotyloma uniorum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 83, 392–397.
  • Litvin, V.A.; Minaev, B.F. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity. Spectrochim. Acta Part A. 2013, 108, 115–122.
  • Salvadori, M.R.; Nascimento, C.A.O.; Corrêa, B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci. Rep. 2014, 4, 6404.
  • Roy, S.; Mukherjee, T.; Chakraborty, S.; Das, T.K. Biosynthesis, characterisation and antifungal activity of Silver nanoparticles synthesized by the fungus Aspergillus foetidus mtcc8876. Dig. J. Nanomater. Biostruct. 2013, 8, 197–205.
  • Vedantham, G.; Sparks, H.G.; Sane, S.U.; Tzannis, S.; Przybycien, T.M. A holistic approach for protein secondary structure estimation from infrared spectra in H(2)O solutions. Anal. Biochem. 2000, 285, 33–49.
  • Cooper, E.A.; Knutson, K. Fourier transform infrared spectroscopy investigations of protein structure. In Physical methods to characterize pharmaceutical proteins; Herron, J.N., Jiskoot, W., Crommelin, D.J.A., Eds.; Springer Science: New York, 1995, 101–137.
  • Bansal, V.; Ahamad, A.; Sastry, M. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. J. Am. Chem. Soc. 2006, 128, 14059–14066.
  • Zhang, Y.X.; Zheng, J.; Gao, G.; Kong, Y.F.; Zhi, X.; Wang, K.; Zhang, X.Q.; Cui, D.X. Biosynthesis of gold nanoparticles using chloroplasts. Int. J. Nanomed. 2011, 6, 2899–2906.
  • Thiel, J.; Pakstis, L.; Buzby, S.; Raffi, M.; Ni, C.; Pochan, D.J.; Shah, S.I. Antibacterial properties of silver-doped titania. Small. 2007, 3, 799–803.
  • Suh, M.P.; Moon, H.R.; Lee, E.Y.; Jang, S.Y. A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. J. Am. Chem. Soc. 2006, 128, 4710–4718.
  • Pattabi, M.; Rao, K.M.; Sainkar, S.; Sastry, R.M. Structural studies on silver cluster films deposited on softened PVP substrates. Thin Solid Films. 1999, 338, 40–45.
  • Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.; Chastain, J. Handbook of X-Ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Corporation: USA, 1992, 15.
  • Briggs, D.; Seah, M.P. Auger and X-ray photoelectron spectroscopy. John Wiley & Sons: New York, 1990, 41.
  • Pustovalov, V.K.; Astafyeva, L.G. Influence of shell parameters on optical properties of spherical metallic core-oxide shell nanoparticles. J. Nanomater. 2015, 1, 1–9.
  • Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Interf. Sci. 2010, 156, 1–13.
  • Girardi, V.; Dieryckx, C.; Job, C.; Job, D. Secretomes: The fungal strike force. Proteomics. 2013, 13, 597–608.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.