Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 52, 2017 - Issue 13
128
Views
2
CrossRef citations to date
0
Altmetric
Articles

Model-based performance and energy analyses of reverse osmosis to reuse wastewater in a PVC production site

, , , , , , , & show all
Pages 1218-1225 | Received 03 May 2017, Accepted 22 Jun 2017, Published online: 14 Sep 2017

References

  • Service, R.F. Desalination freshens up. Science 2006, 313, 1088–1090.
  • Elimelech, M.; Phillip, W.A. The future of seawater desalination: energy, technology, and the environment. Science 2011, 333, 712–717.
  • Altaee, A.; Zaragoza, G.; van Tonningen, H.R. Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 2014, 336, 50–57.
  • Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.
  • Sundaramoorthy, S.; Srinivasan, G.; Murthy, D.V.R. An analytical model for spiral wound reverse osmosis membrane modules: Part I – model development and parameter estimation. Desalination 2011, 280, 403–411.
  • Lonsdale, H.K.; Merten, U.; Riley, R.L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 1965, 9, 1341–1362.
  • Marchetti, P.; Livingston, A.G. Predictive membrane transport models for organic solvent nanofiltration: how complex do we need to be? J. Membr. Sci. 2015, 476, 530–553.
  • Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: the role of polymer science. J. Polym. Sci. Pt. B Polym. Phys. 2010, 48, 1685–1718.
  • Paul, D.R. Reformulation of the solution-diffusion theory of reverse osmosis. J. Membr. Sci. 2004, 241, 371–386.
  • Wijmans, J.G.; Baker, R.W. The solution-diffusion model: a review. J. Membr. Sci. 1995, 107, 1–21.
  • Kataoka, T.; Tsuru, T.; Nakao, S.; Kimura, S. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse-osmosis based on the solution-diffusion model. J. Chem. Eng. Jap. 1991, 24, 326–333.
  • McCray, B.; Vilker, S.; Nobe, V.L. K. Reverse osmosis cellulose acetate membranes II. Dependence of transport properties on acetyl content. J. Membr. Sci. 1991, 59, 317–330.
  • Sekino, M. Precise analytical model of hollow fiber reverse osmosis modules. J. Membr. Sci. 1993, 85, 241–252.
  • Malek, A.; Hawlader, M.N.A.; Ho, J.C. A lumped transport parameter approach in predicting B10 RO permeator performance. Desalination 1994, 99, 19–38.
  • Yaroshchuk, A.E. Solution-diffusion-imperfection model revised. J. Membr. Sci. 1995, 101, 83–87.
  • Oh, H.-J.; Hwang, T.-M.; Lee, S. A simplified simulation model of RO systems for seawater desalination. Desalination 2009, 238, 128–139.
  • Toffoletto, M.; Merdaw, A.A.; Sharif, A.O.; Bertucco, A. Experimental approaches to feed solution permeability in pressure-driven membrane separation processes. J. Membr. Sci. 2010, 364, 27–33.
  • Csefalvay, E.; Pauer, V.; Mizsey, P. Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 2009, 240, 132–142.
  • Hung, P.V.X.; Cho, S.-H.; Moon, S.-H. Prediction of boron transport through seawater reverse osmosis membranes using solution-diffusion model. Desalination 2009, 247, 33–44.
  • Srinivasan, G.; Sundaramoorthy, S.; Murthy, D.V.R. Separation of dimethyl phenol using a spiral-wound RO membrane – experimental and parameter estimation studies. Desalination 2009, 243, 170–181.
  • Nir, O.; Lahav, O. Coupling mass transport and chemical equilibrium models for improving the prediction of SWRO permeate boron concentrations. Desalination 2013, 310, 87–92.
  • Yun, L.; Harder, E.; Faibish, R.S.; Roux, B. Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane. J. Membr. Sci. 2011, 384, 1–9.
  • Lopes, G.H.; Ibaseta, N.; Guichardon, P.; Haldenwang, P. Predicting permeate fluxes and rejection rates in reverse osmosis and tight-nanofiltration processes. Chem. Eng. Technol. 2015, 38, 585–594.
  • Hung, L.-Y.; Lue, S.J.; You, J.-H. Mass-transfer modeling of reverse-osmosis performance on 0.5–2% salty water. Desalination 2011, 265, 67–73.
  • Anqi, A.E.; Alkhamis, N.; Oztekin, A. Numerical simulation of brackish water desalination by a reverse osmosis membrane. Desalination 2015, 369, 156–164.
  • Murthy, Z.V.P.; Chaudhari, L.B. Rejection behavior of nickel ions from synthetic wastewater containing Na(2)SO(4), NiSO(4), MgCl(2) and CaCl(2) salts by nanofiltration and characterization of the membrane. Desalination 2009, 247, 610–622.
  • Liu, C.; Rainwater, K.; Song, L. Energy analysis and efficiency assessment of reverse osmosis desalination process. Desalination 2011, 276, 352–358.
  • Wilf, M. Design consequences of recent improvements in membrane performance. Desalination 1997, 113, 157–163.
  • Oi, B.; Wang, Y.; Xu, S.; Wang, Z.; Wang, S. Operating energy consumption analysis of RO desalting system: effect of membrane process and energy recovery device (ERD) performance variables. Ind. Eng. Chem. Res. 2012, 51, 14135–14144.
  • Zhu, A.H.; Christofides, P.D.; Cohen, Y. Effect of stream mixing on RO energy cost minimization. Desalination 2010, 261, 232–239.
  • Song, L.F.; Hu, J.Y.; Ong, S.L.; Ng, W.J.; Elimelech, M.; Wilf, M. Emergence of thermodynamic restriction and its implications for full-scale reverse osmosis processes. Desalination 2003, 155, 213–228.
  • Pages, N.; Yaroshchuk, A.; Gibert, O.; Luis Cortina, J. Rejection of trace ionic solutes in nanofiltration: influence of aqueous phase composition. Chem. Eng. Sci. 2013, 104, 1107–1115.
  • Yaroshchuk, A.; Martinez-Llado, X.; Llenas, L.; Rovira, M.; de Pablo, J. Solution-diffusion-film model for the description of pressure-driven trans-membrane transfer of electrolyte mixtures: one dominant salt and trace ions. J. Membr. Sci. 2011, 368, 192–201.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.