Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 3
239
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of antibacterial activity and toxic metal removal of chemically synthesized magnetic iron oxide titanium coated nanoparticles and application in bacterial treatment

, &
Pages 205-212 | Received 05 Jun 2017, Accepted 21 Sep 2017, Published online: 17 Nov 2017

References

  • El-Kased, R. F. Natural antibacterial remedy for respiratory tract infections. Asian Pac. J. Trop. Biomed. 2016, 6(3), 270–274. DOI: 10.1016/j.apjtb.2015.12.002.
  • Woo, K.; Hong, J.; Choi, S.; Lee, H.; Ahn, J.; Kim, C.; Lee, S. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 2004, 16(14), 2814–2818. DOI: 10.1021/cm049552x.
  • El-Kased, Reham F.; Amer, Reham I.; Attia, Dalia; Elmazar, M. M. Honey-based hydrogel: In vitro and comparative in vivo evaluation for burn wound healing. Sci. Rep. 2017, 7, 9692. DOI: 10.1038/s41598-017-08771-8.
  • Faraji, M.; Yamini, Y.; Rezaee, M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 2010, 7(1), 1–37. DOI: 10.1007/BF03245856.
  • Ireland, J. C.; Klostermann, P.; Rice, E. W.; Clark, R. M. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl. Environ. Microbiol. 1993, 59, 1668–1670.
  • Matsunaga, T.; Tomada, R.; Nakajima, T.; Wake, H. Photochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 1998, 29, 211–214. DOI: 10.1111/j.1574-6968.1985.tb00864.x.
  • Kolar, M.; Urbanek, K.; Latal, T. Antibiotic selective pressure and development of bacterial resistance. Int. J. Ant. Microbe. Ag. 2001, 17, 357–363. DOI: 10.1016/S0924-8579(01)00317-X.
  • Matsunga, T.; Tomoda, R.; Nakajima, T.; Nakamura, N.; Kmine, T. Continuous-sterilization system that uses photosemiconductor powders. Appl. Environ. Microbiol. 1988, 54, 1330–1333.
  • El saesser, A.; Howard, C. V. Toxicology of nanoparticles. Adv. Drug Deliv. Rev. 2012, 64(2), 129–137. DOI: 10.1016/j.addr.2011.09.001.
  • Naqvi, S.; Samim, M.; Abdin, M.; Ahmed, F. J.; Maitra, A.; Prashant, C.; Dinda, A. K. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine. 2010, 5, 983–989. DOI: 10.2147/IJN.S13244.
  • Pham, H. N.; McDowell, T.; Wikins, E. Photo-catalytically-mediated disinfection of water using TiO2 as a catalyst and spore-forming Bacillus pumilus as a model. J. Environ. Sci. Health A. 1995, 30, 627–636.
  • Kim, B.; Kim, D.; Cho, D.; Cho, S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere. 2003, 52, 277–281. DOI: 10.1016/S0045-6535(03)00051-1.
  • Chawengkijwanich, C.; Hayata, Y. Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int. J. Food Microbiol. 2008, 123, 288–292. DOI: 10.1016/j.ijfoodmicro.2007.12.017.
  • Liu, Y.; Li, J.; Qiu, X. F.; Burda, C. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric Substances [EPS]. J. Photochem. Photobiol. A: Chem. 2007, 190, 94–100. DOI: 10.1016/j.jphotochem.2007.03.017.
  • Sharma, V. K.; Yngard, R. A.; Lin, Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. DOI: 10.1016/j.cis.2008.09.002.
  • Canesi, L.; Ciacci, C.; Betti, M.; Fabbri, R.; Canonico, B.; Fantinati, A.; Marcomini, A.; Poiana, G. Immunotoxicity of carbon black nanoparticles to blue mussel hemocytes. Environ. Int. 2008, 34, 1114–1118. DOI: 10.1016/j.envint.2008.04.002.
  • Huster, D.; Purnat, T. D.; Burkhead, L. L.; Ralle, M.; Fiehn, O.; Stuckert, F.; Olson, N. E.; Teupser, D.; Lutsekno, S. J. High copper selectively alters lipid metabolism and cell cycle machinery in the mouse model of Wilson disease. J. Biol. Chem. 2007, 282, 8343–8355. DOI: 10.1074/jbc.M607496200.
  • Finney, L. A.; O'Halloran, T. V. Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science. 2003, 300, 931–936. DOI: 10.1126/science.1085049.
  • Kennedy, D. C.; Lyn, R. K.; Pezacki, J. P. Cellular lipid metabolism is influenced by the coordination environment of copper. J. Am. Chem. Soc. 2009, 131, 2444–2445. DOI: 10.1021/ja809451w.
  • Lanone, S.; Rogerieux, F.; Geys, F.; Dupont, A.; Maillot-Marechal, E.; Boczkowski J.; Lacroix, G.; Hoet, P. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part. Fibre Toxicol. 2009, 6, 14–25. DOI: 10.1186/1743-8977-6-14.
  • Braydich-Stolle, L.; Hussain, S. M.; Schlager, J.; Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412–419. DOI: 10.1093/toxsci/kfi256.
  • Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008, 19, 255102–255110. DOI: 10.1088/0957-4484/19/25/255102.
  • Shaw, S. Y.; Westly, E. C.; Pittet, M. J.; Subramanian, A.; Schreiber, S. L.; Weissleder, R. Perturbational profiling of nanomaterial biologic activity. Proc. Natl. Acad. Sci. 2008, 105, 7387–7392. DOI: 10.1073/pnas.0802878105.
  • Schrand, A. M.; Rahman, M. F.; Hussain, S. M.; Schlager, J. J.; Smith, D. A.; Syed, A. F. Metal-based nanoparticles and their toxicity assessment. Nanomed. Nanobiotechnol. 2010, 2, 544–568. DOI: 10.1002/wnan.103.
  • Moghimi, S. M. Nanomedicine: Prospective diagnostic and therapeutic potential. Asia Pac. Biotech. News. 2005, 9, 1072–1077.
  • Gajjar, P.; Pettee, B.; Britt, D. W.; Huang, W.; Johnson, W. P.; Anderson, J. Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J. Biol. Eng. 2009, 3, 9–22. DOI: 10.1186/1754-1611-3-9.
  • Feynman, R. There's plenty of room at the bottom. Science. 1991, 254, 1300–1301.
  • Parak, W. J.; Gerion, D.; Pellegrino, T.; Zanchet, D.; Micheel, C.; Williams, C. S.; Boudreau, R.; Le Gros, M. A.; Larabell, C. A.; Alivisatos, A. P. Biological applications of colloidal nanocrystals. Nanotechnology. 2003, 14, 15–27. DOI: 10.1088/0957-4484/14/7/201.
  • Whitesides, G. M. The ‘right’ size in nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165. DOI: 10.1038/nbt872.
  • Gutierrez, F. M.; Olive, P. L.; Banuelos, A.; Orrantia, E.; Nino, N.; Sanchez, E. M.; Ruiz, F.; Bach, H.; Gay, Y. A. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine. 2010, 6, 681–688. DOI: 10.1016/j.nano.2010.02.001.
  • Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108(6), 2064–2110. DOI: 10.1021/cr068445e.
  • Chorianopoulos, N. G.; Tsoukleris, D. S.; Panagou, E. Z.; Falaras, P.; Nychas, G.-J. E. Use of titanium dioxide [TiO2] photo catalysts as alternative means for Listeria mono-cyto-genes biofilm disinfection in food processing. Food Microbiol. 2011, 28, 164–170. DOI: 10.1016/j.fm.2010.07.025.
  • Fujishima, A.; Honda K. Electrochemical photocatalysis of water at semiconductor electrode. Nature. 1972, 238, 27–38. DOI: 10.1038/238037a0.
  • Fujishima, A.; Hashimoto, K.; Watanabe, T. TiO2 Photocatalysis: Fundamentals and Applications; BKC Inc.: Tokyo, Japan, 1992.
  • Wei, C.; Lin, W. Y.; Zainal, Z.; Williams, N. E.; Zhu, K.; Kruzic, A. P.; Smith, R. L.; Rajeshwar, K. Bactericidal activity of TiO2 photo catalyst in aqueous media: Toward a solar-assisted water disinfection system. Environ. Sci. Technol. 1994, 28, 934–938. DOI: 10.1021/es00054a027.
  • Hong, R. Y.; Pan, T. T.; Li, H. Z. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J. Magn. Magn. Mater. 2006, 303, 60–68. DOI: 10.1016/j.jmmm.2006.02.008 10.1016/j.jmmm.2005.10.230.
  • Indira, T. K.; Lakshmi, P. K. Magnetic nanoparticles. Int. J. Pharm. Sci. Nanotech. 2010, 3, 1035–1042.
  • American Public Health Association; Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E.; American Water Works Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, 1995.
  • Bauer, A. W.; Kirby, W. M.; Sherris, J. C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496.
  • Cheesbrough, M. District Laboratory Practice in Tropical Countries; Cheesbrough, M., Ed.; Cambridge University Press: Cambridge, 2005, 132–143.
  • Koneman, E. W.; Allen, S. D.; Janda, W. M.; Schreckenberger, P. C.; Winn, W. C. Diagnostic Microbiology; Koneman, E. W., Ed.; Lippincott: Philadelphia, 1997, 803–841.
  • Mahdavi, M.; Namvar, F.; Ahmad, M. B.; Mohamad, R. Green biosynthesis and characterization of magnetic iron oxide [Fe3O4] nanoparticles using seaweed [Sargassum muticum] aqueous extract. Moecules. 2007, 18, 5954–5964. DOI: 10.3390/molecules18055954.
  • El-Sayed, M. H.; Abdulhady, Y. A. M. Heavy metals removal by using magnetic iron oxide/TiO2 nanocomposite for wastewater treatment in 10th of Ramadan City, Egypt. Egyptian J. Desert Res. 2015, 65(1), 81–99.
  • Bateganya, N. L.; Nakalanzi, D.; Babu, M.; Hein, T. Buffering municipal wastewater pollution using urban wetlands in sub-Saharan Africa: A case of Masaka municipality, Uganda. Environ. Technol. 2015, 36, 17–22. DOI: 10.1080/09593330.2015.1023363.
  • Abdel Hameed, M. E.; Moustafa, A.; Amr, M. S.; Hosam, A. S. Using silver nanoparticles coated on activated carbon granules in columns for microbiological pollutants water disinfection in Abu Rawash area, Great Cairo, Egypt. Aust. J. Basic Appl. Sci. 2013, 7(1), 422–432.
  • Yunus, I. S.; Harwin, K. A.; Adityawarman, D.; Indarto, A. Nanotechnologies in water and air pollution treatment. Environ. Technol. Rev. 2012, 1(1), 136–148. DOI: 10.1080/21622515.2012.733966.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.