Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 4
332
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Estimation of Cadmium uptake by tobacco plants from laboratory leaching tests

, , , , , & show all
Pages 352-361 | Received 20 Jul 2017, Accepted 27 Oct 2017, Published online: 27 Dec 2017

References

  • Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium. Agency for Toxic Substances and Disease Registry (US). U.S. Department of health and human services; Public health service: Atlanta, GA, 2012, pp 1–430.
  • Wedepohl, K. H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta. 1995, 59(7), 1217–1232. doi:10.1016/0016-7037(95)00038-2.
  • US EPA. Integrated Risk Information System on Cadmium; United States Environmental Protection Agency: Washington, DC, 1999.
  • Jarup, L. Cadmium Overload and Toxicity. Nephrol. Dial. Transplant. 2002, 17(Supple 2), 35–39. doi:10.1093/ndt/17.suppl_2.35.
  • Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P. E.; Williams, D. J.; Moore, M. R. A Global Perspective on Cadmium Pollution and Toxicity in Non-Occupationally Exposed Population. Toxicol. Lett. 2003, 137(1–2), 65–83. doi:10.1016/S0378-4274(02)00381-8.
  • Liang, Z.; Ding, Q.; Wei, D.; Li, J.; Chen, S.; Ma, Y. Major Controlling Factors and Predictions for Cadmium Transfer from the Soil into Spinach Plants. Ecotoxicol. Environ. Saf. 2013, 93, 180–185. doi:10.1016/j.ecoenv.2013.04.003.
  • Alloway, B. J.; Steinnes, E. Anthropogenic Additions of Cadmium to Soils. In Cadmium in Soils and Plants. Developments in Plant and Soil Sciences; McLaughlin, M.J.; Singh, B.R., Eds.; Springer: Dordrecht, Netherlands, 1999; Vol 85, pp 97–123.
  • Holmgren, G. G. S.; Meyer, M. W.; Chaney, R. L.; Daniels, R. B. Cadmium, Lead, Zinc, Copper, And Nickel in Agricultural Soils of the United States of America. J. Environ. Qual. 1993, 22(2), 335–348. doi:10.2134/jeq1993.00472425002200020015x.
  • EPA. Cadmium Contamination of the Environment: An Assessment of Nationwide Risk. Environmental Protection Agency: Washington, DC, 1985.
  • Tang, J.; Xiao, T.; Wang, S.; Lei, J.; Zhang, M.; Gong, Y.; Li, H.; Ning, Z.; He, L. High Cadmium Concentrations in Areas with Endemic Fluorosis: A Serious Hidden Toxin? Chemosphere 2009, 76(3), 300–305. doi:10.1016/j.chemosphere.2009.03.064.
  • Rambeau, C. M. C.; Baize, D.; Saby, N.; Matera, V.; Adatte, T.; Föllmi, K. B. High Cadmium Concentrations in Jurassic Limestone as the Cause for Elevated Cadmium Levels in Deriving Soils: A Case Study in Lower Burgundy, France. Environ. Earth Sci. 2010, 61(8), 1573–1585. doi:10.1007/s12665-010-0471-0.
  • Merrington, G.; Alloway, B. J. The Flux of Cd, Cu, Pb and Zn in Mining Polluted Soils. Water Air Soil Pollut. 1994, 73(1), 333–344. doi:10.1007/BF00477997.
  • Alloway, B. J. Cadmium. In Schwermetalle in Böden; Alloway, B. J., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 1999; pp 151–182.
  • Davies, B. E.; Roberts, L. J. Heavy Metals in Soils and Radish in a Mineralised Limestone Area of Wales, Great Britain. Sci. Total Environ. 1975, 4(3), 249–261. doi:10.1016/0048-9697(75)90003-0.
  • Buchauer, M. J. Contamination of Soil and Vegetation Near a Zinc Smelter by Zinc, Cadmium, Copper, and Lead. Environ. Sci. Technol. 1973, 7(2), 131–135. doi:10.1021/es60074a004.
  • Alloway, B. J.; Thornton, I.; Smart, G. A.; Sherlock, J. C.; Quinn, M. J. Metal Availability. Sci. Total Environ. 1988, 75(1), 41–69. doi:10.1016/0048-9697(88)90159-3.
  • McComish, M. F.; Ong, J. H. Cadmium. In Environmental Inorganic Chemistry: Properties, Processes, and Estimation Methods; Bodek, I., Lyman, W. J., Reehl, W. F., Rosenblatt, D. H., Eds.; Pergamon Press: New York, NY, 1988.
  • Alloway, B. J. Cadmium. In Heavy Metals in Soils; Blackie Academic and Proffesional: Glasgow, UK, 1995; pp 122–151.
  • Adamo, P.; Iavazzo, P.; Albanese, S.; Agrelli, D.; De Vivo, B.; Lima, A. Bioavailability and Soil-To-Plant Transfer Factors as Indicators of Potentially Toxic Element Contamination in Agricultural Soils. Sci. Total Environ. 2014, 500–501, 11–22. doi:10.1016/j.scitotenv.2014.08.085.
  • Zhu, Q. H.; Huang, D. Y.; Liu, S. L.; Luo, Z. C.; Zhu, H. H.; Zhou, B.; Lei, M.; Rao, Z. X.; Cao, X. L. Assessment of Single Extraction Methods for Evaluating the Immobilization Effect of Amendments on Cadmium in Contaminated Acidic Paddy Soil. Plant Soil Environ. 2012, 58(2), 98–103.
  • Meers, E.; Samson, R.; Tack, F. M. G.; Ruttens, A.; Vandegehuchte, M.; Vangronsveld, J.; Verloo, M. G. Phytoavailability Assessment of Heavy Metals in Soils by Single Extractions and Accumulation by Phaseolus Vulgaris. Environ. Exp. Bot. 2007, 60(3), 385–396. doi:10.1016/j.envexpbot.2006.12.010.
  • Milićević, T.; Relić, D.; Škrivanj, S.; Tešić, Ž.; Popović, A. Assessment of Major and Trace Element Bioavailability in Vineyard Soil Applying Different Single Extraction Procedures and Pseudo-Total Digestion. Chemosphere 2017, 171, 284–293. doi:10.1016/j.chemosphere.2016.12.090.
  • ISO 14870. In Soil Quality – Extraction of Trace Elements by Buffered DTPA Solution. International standard ISO, reference number ISO 14870:2001(E); International Organization for Standardization: Switzerland, 2001.
  • ISO 19730. In Soil Quality – Extraction of Trace Elements from Soil Using Ammonium Nitrate Solution. Reference number ISO 19730:2008(E); International Organization for Standardization: Switzerland, 2008.
  • Rao, C. R. M.; Sahuquillo, A.; Lopez Sanchez, J. F. A Review of the Different Methods Applied in Environmental Geochemistry for Single and Sequential Extraction of Trace Elements in Soils And Related Materials. Water Air Soil Pollut. 2008, 189(1–4), 291–333. doi:10.1007/s11270-007-9564-0.
  • Ure, A. M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51(1–4), 135–151. doi:10.1080/03067319308027619.
  • Tessier, A.; Campbell, P. G. C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51(7), 844–851. doi:10.1021/ac50043a017.
  • Marković, J.; Jović, M.; Smičiklas, I.; Pezo, L.; Šljivić-Ivanović, M.; Onjia, A.; Popović, A. Chemical Speciation of Metals in Unpolluted Soils of Different Types: Correlation with Soil Characteristics and an ANN Modelling Approach. J. Geochemical Explor. 2016, 165, 71–80. doi:10.1016/j.gexplo.2016.03.004.
  • Li, J.-T.; Baker, A. J. M.; Ye, Z.-H.; Wang, H.-B.; Shu, W.-S. Phytoextraction of Cd-contaminated Soils: Current Status and Future Challenges. Crit. Rev. Environ. Sci. Technol. 2012, 42(20), 2113–2152. doi:10.1080/10643389.2011.574105.
  • Keller, C.; Marchetti, M.; Rossi, L.; Lugon-Moulin, N. Reduction of Cadmium Availability to Tobacco (Nicotiana tabacum) Plants Using Soil Amendments in Low Cadmium-Contaminated Agricultural Soils: A Pot Experiment. Plant and Soil 2005, 276(1–2), 69–84. doi:10.1007/s11104-005-3101-y.
  • CEN 12457-2. Characterisation of Waste – Leaching – Compliance Test for Leaching of Granular Waste Materials and Sludges – Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg For Materials with Particle Size Below 4 mm (without or with size reduction). British Standard Institution: London, 2002.
  • ISO/TS 21268-2. Soil Quality – Leaching Procedures for Subsequent Chemical and Ecotoxicological Testing of Soil and Soil Materials – Part 2: Batch Test Using a Liquid to Solid Ratio of 10 L/kg Dry Matter. Reference number ISO/TS 21268-2:2007(E). International Organization for Standardization/Technical Specifications: Switzerland, 2007.
  • Method 1311. Toxicity Characteristic Leaching Procedure (TCLP). Report Number: SW-846 Ch 8.4: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency: USA, 2012. Available: http://www.epa.gov/epaoswer/hazwaste/test/pdfs/1311.pdf (accessed Oct 2017).
  • Method 1312. Synthetic Precipitation Leaching Procedure (SPLP). Report Number: SW-846 Ch 6: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency: USA, 1994. Available: https://www.epa.gov/sites/production/files/2015-12/documents/1312.pdf (accessed Oct 2017).
  • Method 3051A. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. SW-846: Test Methods Evaluation Solid Waste, Physical/Chemical Methods. U.S. Environmental Protection Agency: USA, 2007. Available: https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf (accessed Oct 2017).
  • Nelson, D. W.; Sommers, L. E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis Part 3 – Chemical Methods; Sparks, D. I., Ed.; Soil Science Society of America Inc. and American Society of Agronomy Inc.: Madison, 1996; pp 961–1010.
  • Enger, H.; Riehm, H. Die Ammoniumlaktatessigsaure – Methode Zur Bestimmung Der Leichtloslichen Phosphorsaure in Karbonathaltigen Boden. Agrochim 1958, 3, 49–65.
  • Sumner, M. E.; Miller, W. P. Cation Exchange Capacity and Exchange Coefficients. In Method of Soil Analysis. Part 3. Chemical Methods; Sparks, D. L., Ed.; SSSA: Madison, 1996; pp 1201–1229.
  • Mrvić, V.; Jakovljević, M.; Stevanović, D.; Čakmak, D.; Zdravković, M. Methods For the Determination of the Form of Aluminium: Pseudogley Soils. J. Serbian Chem. Soc. 2008, 73(6), 673–680. doi:10.2298/JSC0806673M.
  • Saxton, K. E.; Rawls, W. J.; Romberger, J. S.; Papendick, R. I. Estimating Generalized Soil-Water Characteristics from Texture1. Soil Sci. Soc. Am. J. 1986, 50(4), 1031. doi:10.2136/sssaj1986.03615995005000040039x.
  • WRB. World Reference Base for Soil Resources; World Soil Resources Reports No. 103. Food and Agriculture Organization of the United Nations: Rome, 2006.
  • Uminska, R. Cadmium Contents of Cultivated Soils Exposed to Contamination in Poland. Environ. Geochem. Health 1993, 15(1), 15–19. doi:10.1007/BF00146288.
  • Page, A. L.; Chang, A. C.; El-Amamy, M. Cadmium Levels in Soils and Crops in the United States. In Lead, Mercury, Cadmium and Arsenic in the Environment; Hutchinson, T. C.; Meema, K. M., Eds.; John Wiley&Sons Ltd: Chichester, New York, 1987; pp 119–146.
  • Pichtel, J.; Kuroiwa, K.; Sawyerr, H. Distribution of Pb, Cd and Ba in Soils and Plants of Two Contaminated Sites. Environ. Pollut. 2000, 110(1), 171–178. doi:10.1016/S0269-7491(99)00272-9.
  • Quingsong, H. E.; Yue, R.; Ibrahim, M.; Moha, A.; Waseem, H.; Fangui, Z. Assessment of Trace and Heavy Metal Distribution by Four Extraction Procedures in a Contaminated Soil. Soil Water Res. 2013, 8(2), 71–76.
  • Mench, M. J.; Didier, V. L.; Löffler, M.; Gomez, A.; Masson, P. A Mimicked In-Situ Remediation Study of Metal-Contaminated Soils with Emphasis on Cadmium and Lead. J. Environ. Qual. 1994, 23(1), 58–63. doi:10.2134/jeq1994.00472425002300010010x.
  • Elliott, H. A.; Brown, G. A. Comparative Evaluation of NTA and EDTA for Extractive Decontamination of Pb-Polluted Soils. Water Air Soil Pollut. 1989, 45, 361–369. doi:10.1007/BF00283464.
  • Alamgir, Md. The Effects of Soil Properties to the Extent of Soil Contamination with Metals. In Environmental Remediation Technologies for Metal-Contaminated Soils; Hasegawa, H., Rahman, I. M. M., Rahman, M. A., Eds.; Springer Japan: Tokyo, 2016; pp 1–19.
  • Abollino, O.; Malandrino, M.; Giacomino, A.; Mentasti, E. The Role of Chemometrics in Single and Sequential Extraction Assays: A Review. Anal. Chim. Acta. 2011, 688(2), 104–121. doi:10.1016/j.aca.2010.12.020.
  • Dimović, S.; Smičiklas, I.; Šljivić-Ivanović, M.; Dojčinović, B. Speciation of 90Sr and Other Metal Cations in Artificially Contaminated Soils: The Influence of Bone Sorbent Addition. J. Soils Sediments 2013, 13(2), 383–393. doi:10.1007/s11368-012-0633-7.
  • He, Q.; Ren, Y.; Mohamed, I.; Ali, M.; Hassan, W.; Zeng, F. Assessment of Trace and Heavy Metal Distribution by Four Sequential Extraction Procedures in a Contaminated Soil. Soil Water Res. 2013, 8, 71–76.
  • Kennou, B.; El Meray, M.; Romane, A.; Arjouni, Y. Assessment of Heavy Metal Availability (Pb, Cu, Cr, Cd, Zn) and Speciation in Contaminated Soils and Sediment of Discharge by Sequential Extraction. Environ. Earth Sci. 2015, 74(7), 5849–5858. doi:10.1007/s12665-015-4609-y.
  • Pueyo, M.; Sastre, J.; Hernández, E.; Vidal, M.; López-Sánchez, J. F.; Rauret, G. Heavy Metals in the Environment: Prediction of Trace Element Mobility in Contaminated Soils by Sequential Extraction. J. Environ. Qual. 2003, 32, 2054–2066. doi:10.2134/jeq2003.2054.
  • Khanmirzaei, A.; Bazargan, K.; Moezzi, A. A.; Richards, B. K.; Shahbazi, K. Single and Sequential Extraction of Cadmium in Some Highly Calcareous Soils of Southwestern Iran. J. Soil Sci. Plant Nutr. 2013, 13(1), 153–164.
  • Meers, E.; Du Laing, G.; Unamuno, V.; Ruttens, A.; Vangronsveld, J.; Tack, F. M. G.; Verloo, M. G. Comparison of Cadmium Extractability from Soils by Commonly Used Single Extraction Protocols. Geoderma. 2007, 141(3–4), 247–259. doi:10.1016/j.geoderma.2007.06.002.
  • Meers, E.; Unamuno, V.; Vandegehuchte, M.; Vanbroekhoven, K.; Geebelen, W.; Samson, R.; Vangronsveld, J.; Diels, L.; Ruttens, A.; Laing, G. Du; Tack, F. Soil-Solution Speciation of Cd as Affected by Soil Characteristics in Unpolluted and Polluted Soils. Environ. Toxicol. Chem. 2005, 24(3), 499–509. doi:10.1897/04-231R.1.
  • Kede, M.; Correia, F.; Conceição, P.; Junior, S.; Marques, M.; Moreira, J.; Pérez, D. Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms. Int. J. Environ. Res. Public Health 2014, 11(11), 11528–11540. doi:10.3390/ijerph111111528.
  • Ladwani, K. D.; Ladwani, K. D.; Manik, V. S.; Ramteke, D. S. Assessment of Heavy Metal Contaminated Soil Near Coal Mining Area in Gujarat by Toxicity Characteristics Leaching Procedure. J. Life Sci. Biotechnol. Pharma Res. 2012, 1(4), 73–80.
  • Yin, D.; Wang, X.; Chen, C.; Peng, B.; Tan, C.; Li, H. Varying Effect of Biochar on Cd, Pb and as Mobility in a Multi-Metal Contaminated Paddy Soil. Chemosphere 2016, 152, 196–206. doi:10.1016/j.chemosphere.2016.01.044.
  • Mirecki, N.; Agič, R.; Šunić, L.; Milenković, L.; Ilić, Z. S. Transfer Factor as Indicator of Heavy Metals Content in Plants. Fresenius Environ. Bull. 2015, 24(11c), 4212–4219.
  • Wang, X.; Shan, X.; Zhang, S.; Wen, B. A Model for Evaluation of the Phytoavailability of Trace Elements to Vegetables under the Field Conditions. Chemosphere 2004, 55(6), 811–822. doi:10.1016/j.chemosphere.2003.12.003.
  • Samsøe-Petersen, L.; Larsen, E. H.; Larsen, P. B.; Bruun, P. Uptake of Trace Elements and PAHs by Fruit And Vegetables From Contaminated Soils. Environ. Sci. Technol. 2002, 36(14), 3057–3063. doi:10.1021/es015691t.
  • Barazani, O.; Sathiyamoorthy, P.; Manandhar, U.; Vulkan, R.; Golan-Goldhirsh, A. Heavy Metal Accumulation by Nicotiana Glauca Graham in a Solid Waste Disposal Site. Chemosphere 2004, 54(7), 867–872. doi:10.1016/j.chemosphere.2003.10.005.
  • SOP 2034. Standard Operating Procedures (SOP): Plant Biomass Determination. Scientific, Engineering, Response and Analytical Services (SERAS), U.S. EPA Contract EP-W-09-031. U.S. Environmental Protection Agency: USA, 1994. Available: https://clu-in.org/download/ert/2034-R00.pdf (accessed Oct 2017).
  • Liu, L.; Li, Y.; Tang, J.; Hu, L.; Chen, X. Plant Coexistence can Enhance Phytoextraction of Cadmium by Tobacco (Nicotiana tabacum L.) in Contaminated Soil. J. Environ. Sci. 2011, 23(3), 453–460. doi:10.1016/S1001-0742(10)60430-5.
  • Menzies, N. W.; Donn, M. J.; Kopittke, P. M. Evaluation of Extractants for Estimation of the Phytoavailable Trace Metals in Soils. Environ. Pollut. 2007, 145(1), 121–130. doi:10.1016/j.envpol.2006.03.021.
  • Degryse, F.; Broos, K.; Smolders, E.; Merckx, R. Soil Solution Concentration of Cd and Zn can be Predicted with a CaCl2 Soil Extract. Eur. J. Soil Sci. 2003, 54(1), 149–158. doi:10.1046/j.1365-2389.2003.00503.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.