Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 7
664
Views
1
CrossRef citations to date
0
Altmetric
Articles

Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.)

, &
Pages 609-616 | Received 06 Oct 2017, Accepted 11 Jan 2018, Published online: 01 Feb 2018

References

  • Monzalvo-Santos, K.; Alfaro-De la Torre, M. C.; Chapa-Vargas, L.; Castro-Larragoitia, J.; Rodríguez-Estrella, R. Arsenic and Lead Contamination in Soil and in Feathers of Three Resident Passerine Species in a Semi-Arid Mining Region of the Mexican Plateau. J. Environ. Sci. Health, Part. A 2016, 51(10), 825–832. DOI:10.1080/10934529.2016.1181451.
  • Su, C.; Zhang, W. J.; Jiang, L. Q. A Review on Heavy Metal Contamination in the Soil Worldwide: Situation, Impact and Remediation Techniques. Environ. Skeptics. Crit. 2014, 3(2), 24–38.
  • Ali, H.; Khan, E.; Sajad, M. A. Phytoremediation of Heavy Metals – Concepts and Applications. Chemosphere 2013, 91(7), 869–881. DOI:10.1016/j.chemosphere.2013.01.075.
  • Chen, X.; Liu, X.; Zhang, X.; Cao, L.; Lu, X. 2017. Phytoremediation Effect of Scirpus Riqueter Inoculated Plant-Growth-Promoting Bacteria (PGPB) on Different Fractions of Pyrene and Ni in Co-Contaminated Soils. J. Hazard. Mater. 2017, 325, 319–326. DOI:10.1016/j.jhazmat.2016.12.009.
  • Li, Y.-H.; Li, H.-B; Xu, X.-Y.; Xiao, S.-Y.; Wang, S.-Q. Distributions, Sources and Ecological Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Subsurface Water of Urban Old Industrial Relocation Areas: A Case Study in Shenyang, China. J. Environ. Sci. Health, Part. A 2017, 52(10), 971–978. DOI:10.1080/10934529.2017.1324709.
  • García-Carmona, M.; Romero-Freire, A.; Aragón, M. S.; Garzón, F. J. M.; Peinado, F. J. M. Evaluation of Remediation Techniques in Soils Affected by Residual Contamination with Heavy Metals and Arsenic. J. Environ. Manage. 2017, 191, 228–236. DOI:10.1016/j.jenvman.2016.12.041.
  • Blume, H. P. Book Review: Helmut Meuser, Soil Remediation and Rehabilitation – Treatment of Contaminated and Disturbed Land: 23 Environmental Pollution. J. Plant Nutr. Soil Sci. 2014, 177(1), 104. DOI:10.1002/jpln.201490000.
  • Swartjes, F. A. Risk-Based Assessment of Soil and Groundwater Quality in the Netherlands: Standards and Remediation Urgency. Risk Anal. 1999, 19(6), 1235–1249. DOI:10.1111/j.1539-6924.1999.tb01142.x.
  • Feng, N. X.; Yu, J.; Zhao, H. M.; Cheng, Y. T.; Mo, C. H.; Cai, Q. Y.; Li, Y. W.; Li, H.; Wong, M. H. Efficient Phytoremediation of Organic Contaminants in Soils Using Plant Endophyte Partnerships. Sci. Total Environ. 2017, 583, 352–368. DOI:10.1016/j.scitotenv.2017.01.075.
  • Vigliotta, G.; Matrella, S.; Cicatelli, A.; Guarino, F.; Castiglione, S. 2016. Effects of Heavy Metals and Chelants On Phytoremediation Capacity and On Rhizobacterial Communities of Maize. J. Environ. Manage. 2016, 179, 93–102.
  • Paz-Alberto, A. M.; Sigua, G. C. 2013. Phytoremediation: A Green Technology to Remove Environmental Pollutants. Amer. J. Climate. Change 2013, 2(1), 71–86. DOI:10.4236/ajcc.2013.21008.
  • Mellem, J. J; Baijnath, H.; Odhav, B. Translocation and Accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus Dubius (Amaranthaceae) from Contaminated Sites. J. Environ. Sci. Health, Part. A 2009, 44(6), 568–575. DOI:10.1080/10934520902784583.
  • Salam, J. A.; Hatha, M. A. A.; Das, N. Microbial-Enhanced Lindane Removal by Sugarcane (Saccharum Officinarum) in Doped Soil-Applications in Phytoremediation and Bioaugmentation. J. Environ. Manage. 2017, 193, 394–399. DOI:10.1016/j.jenvman.2017.02.006.
  • Bleicher, A. 2016. Technological Change in Revitalization – Phytoremediation and The Role of Nonknowledge. J. Environ. Manage. 2016, 184, 78–84. DOI:10.1016/j.jenvman.2016.07.046.
  • Kogbara, R. B.; Ogar, I.; Okparanma, R. N.; Ayotamuno, J. M. Treatment of Petroleum Drill Cuttings Using Bioaugmentation and Biostimulation Supplemented with Phytoremediation. J. Environ. Sci. Health, Part. A 2016, 51(9), 714–721. DOI:10.1080/10934529.2016.1170437.
  • Sun, Y.; Zhou, Q.; Xu, Y.; Wang, L.; Liang, X. Phytoremediation for Co-Contaminated Soils of Benzo[a]Pyrene (B[a]P) and Heavy Metals Using Ornamental Plant Tagetespatula. J. Hazard Mater. 2011, 186, 2075–2082. DOI:10.1016/j.jhazmat.2010.12.116.
  • Abioye, O. P.; Agamuthu, P.; Aziz, A. R. A. Phytotreatment of Soil Contaminated with Used Lubricating Oil Using Hibiscus Cannabinus. Biodegradation 2011, 23(2), 277–286. DOI:10.1007/s10532-011-9506-9.
  • Zhao, X. H.; Ma, W. F.; Sun, J. M.; Zhang, L. Effects of Rhizosphere in Phytoremediation of Heavy Metal-Organic Combined Contamination in Dredged River Sediment by Maize. J. Agro-Environ. Sci. 2006, 1, 100–106.
  • Martins, C. D. C.; Liduino, V. S.; Oliveira, F. J. S.; Sérvulo, E. F. C. Phytoremediation of Soil Multi-Contaminated with Hydrocarbons and Heavy Metals Using Sunflowers. Int. J. Eng. Technol. 2014, 14(5), 1–6.
  • Zdarta A.; Smułek, W.; Pietraszak, E.; Kaczorek, E.; Olszanowski, A. Hydrocarbons Biodegradation by Activated Sludge Bacteria in the Presence of Natural and Synthetic Surfactants. J. Environ. Sci. Health, Part. A 2016, 51(14), 1262–1268. DOI:10.1080/10934529.2016.1215194.
  • Das, P.; Ma, L. Z. Pyocyanin Pigment Assisting Biosurfactant-Mediated Hydrocarbon Emulsification. Int. Biodeterior. Biodegrad. 2013, 85, 278–283. DOI:10.1016/j.ibiod.2013.07.013.
  • An, C.; Huang, G.; Wei, J.; Yu, H. Effect of Short-Chain Organic Acids on the Enhanced Desorption of Phenanthrene by Rhamnolipid Biosurfactant in Soil and Water Environment. Water Res. 2011, 45(17), 5501–5510. DOI:10.1016/j.watres.2011.08.011.
  • Bordas, F.; Lafrance, P.; Villemur, R. Conditions for Effective Removal of Pyrene from an Artificially Contaminated Soil Using Pseudomonas Aeruginosa 57SJ Rhamnolipids. Environ. Poll. 2005, 138(1), 69–76. DOI:10.1016/j.envpol.2005.02.017.
  • Deshpande, S.; Wesson, L.; Wade, D.; Sabatini, D. A.; Harwell, J. H. DOWFAX Surfactant Components for Enhancing Contaminant Solubilization. Water Res. 2000, 34(3), 1030–1036. DOI:10.1016/S0043-1354(99)00195-5.
  • Franzetti, A.; Gandolfi, I.; Bestetti, G.; Banat, I. M. (Bio)Surfactant and Bioremediation, Successes and Failures. In Trends in Bioremediation and Phytoremediation, Płaza, G., Research Signpost: Kerala, 2010; pp 145–156.
  • Lovaglio, R. B.; Silva, V. L.; Ferreira, H.; Hausmann, R.; Contiero, J. Rhamnolipids Know-How: Looking for Strategies for its Industrial Dissemination. Biotechnol. Adv. 2015, 33(8), 1715–1726. DOI:10.1016/j.biotechadv.2015.09.002.
  • Gao, Y. Z.; Ling, W. T.; Zhu, L. Z.; Zhao, B. W.; Zheng, Q. S. Surfactant- Enhanced Phytoremediation of Soils Contaminated with Hydrophobic Organic Contaminants: Potential and Assessment. Pedosphere 2007, 17(4), 409–418. DOI:10.1016/S1002-0160(07)60050-2.
  • Liao, C.; Liang, X.; Lu, G.; Thai, T.; Xu, W.; Dang, Z. Effect of Surfactant Amendment to PAHs-Contaminated Soil for Phytoremediation by Maize (Zea Mays L.). Ecotoxicol. Environ. Saf. 2015, 112, 1–6. DOI:10.1016/j.ecoenv.2014.10.025.
  • Udotong, I. R.; Eduok, S. I.; Essien, J. P.; Ita, B. N. Density of Hydrocarbonoclastic Bacteria and Polycyclic Aromatic Hydrocarbon Accumulation in Iko River Mangrove Ecosystem, Nigeria. World Acad. Sci. Eng. Technol. 2008, 2(8), 60–66.
  • McCance, M. E.; Margaret, F.; Harrigan, W. F. Laboratory Methods in Food and Diary Microbiology; Academic Press: London, 1976; pp 452.
  • Wrenn, B. A.; Venosa, A. D. Selective Enumeration of Aromatic and Aliphatic Hydrocarbon Degrading Bacteria by a Most-Probable-Number Procedure. Can. J. Microbiol. 1996, 42(3), 252–258. DOI:10.1139/m96-037.
  • https://www.epa.gov/hw-sw846/sw-846-compendium (accessed Jan 2014).
  • http://www.esdat.net/Environmental_Standards.aspx (accessed Jun 15).
  • Brazilian Association of Technical Norms. 7181 – Soil: grain size distribution; ABNT: Rio de Janeiro, 2016; pp 1–16 ( in Portuguese).
  • Carmo, F. L.; Santos, H. F.; Ferreira, E. M.; Elsas, J. D. V.; Rosado, A. S.; Peixoto, R. S. Bacterial Structure and Characterization of Plant Growth Promoting and Oil Degrading Bacteria from the Rhizospheres of Mangrove Plants. J. Microbiol. 2011, 49(4), 535–543. DOI:10.1007/s12275-011-0528-0.
  • Pirnik, M. P.; Atlas, R. M.; Bartha, R. Hydrocarbon Metabolism by Brevibacterium Erythrogenes: Normal and Branched Alkanes. J. Bacteriol. 1974, 119(3), 868–878.
  • Nascimento, T. C. F.; Oliveira, F. J. S.; França, F. P. Potential of Glycerol and Soybean Oil of Weathered Oily-Sludge Contaminated Soil. Braz. J. Pet. Gas. 2012, 6(2), 43–51. DOI:10.5419/bjpg2012-0004.
  • https://www.atsdr.cdc.gov/csem/csem.asp?csem=13&po=11 (accessed Dec 17).
  • Abdel-Shafy, H. I.; Mansour, M. S. M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25(1), 107–123. DOI:10.1016/j.ejpe.2015.03.011.
  • Bhattacharyya, J. K.; Shekdar, A. V. Treatment and Disposal of Refinery Sludges: Indian Scenario. Waste Manage. Res. 2003, 21(3), 249–261. DOI:10.1177/0734242X0302100309.
  • Hu, G.; Li, J.; Zeng, G. Recent Development in the Treatment of Oily Sludge from Petroleum Industry: A Review. J Hazard Mater. 2013, 261, 470–490. DOI:10.1016/j.jhazmat.2013.07.069.
  • Megharaj, M.; Ramakrishnan, B.; Venkateswarlu, K.; Sethunathan, N.; Naidu, R Bioremediation Approaches for Organic Pollutants: A Critical Perspective. Environ. Int. 2011, 37(8), 1362–1375. DOI:10.1016/j.envint.2011.06.003.
  • da Silva, L. J.; Oliveira, F. J. S.; de França, F. P. Oil Waste Management Through Large Scale Landfarming: A Case Study. Int. J. Environ. Waste Manage. 2013, 11(3), 233–243. DOI:10.1504/IJEWM.2013.053122.
  • Urum, K.; Grigson, S.; Pekdemir, T.; McMenamyb, S. A. Comparison of the Efficiency of Different Surfactants for Removal of Crude Oil from Contaminated Soils. Chemosphere 2010, 62(9), 1403–1410. DOI:10.1016/j.chemosphere.2005.05.016.
  • Moreira, I. T. A.; Oliveira, O. M. C.; Triguis, J. A.; Santos, A. M. P.; Queiroz, A. F. S.; Martins, C. M. S.; Silva, C. S.; Jesus, R. S. Phytoremediation Using Rizophora Mangle L. in Mangrove Sediments Contaminated by Persistent Total Petroleum Hydrocarbons (TPH's). Microchem. J. 2011, 99(2), 376–382. DOI:10.1016/j.microc.2011.06.011.
  • Gao, T. Z.; Shen, Q.; Ling, W.; Ren, L. Uptake of Polycyclic Aromatic Hydrocarbons by Trifolium Pretense L. from Water in the Presence of a Nonionic Surfactant. Chemosphere 2008, 72(4), 636–643. DOI:10.1016/j.chemosphere.2008.02.032.
  • https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016 (accessed May 17).
  • Forte, J.; Mutiti, S. 2017. Phytoremediation Potential of Helianthus Annuus and Hydrangea Paniculata in Copper and Lead-Contaminated Soil. Water Air Soil Pollut. 2017, 228(2), 77. DOI:10.1007/s11270-017-3249-0.
  • Francis, E. Phytoremediation Potentials of Sunflower (Helianthus Annuus L.) Asteraceae on Contaminated Soils of Abandoned Dumpsites. Int. J. Sci. Eng. Res. 2017, 8(1), 1751–1757.
  • Xia, H. L.; Chi, X. Y.; Yan, Z. J.; Cheng, W. W. Enhancing Plant Uptake of Polychlorinated Biphenyls and Cadmium Using Tea Saponin. Bioresour. Technol. 2009, 100(20), 4649–4653. DOI:10.1016/j.biortech.2009.04.069.
  • Trindade, P. V. O.; Sobral, L. G.; Rizzo, A. C. L.; Leite, S. G. F.; Soriano, A. U. Bioremediation of a Weathered and a Recently Oil-Contaminated Soil from Brazil: A Comparison Study. Chemosphere 2005, 58(4), 515–522. DOI:10.1016/j.chemosphere.2004.09.021.
  • Ramírez, M. E.; Zapién, B.; Zegarra, H. G.; Rojas, N. G.; Fernández, L. C. Assessment of Hydrocarbon Biodegradability in Clayed and Weathered Polluted Soils. Int. Biodeter. Biodegr. 2009, 63(3), 347–353. DOI:10.1016/j.ibiod.2008.11.010.
  • Tejeda-Agredano, M. C.; Gallego, S.; Vila, J.; Grifoll, M.; Ortega-Calvo, J. J.; Cantos, M. Influence of the Sunflower Rhizosphere on the Biodegradation of PHAs in Soil. Soil Biol. Biochem. 2012, 57, 830–840. DOI:10.1016/j.soilbio.2012.08.008.
  • Mishra, S.; Jyot, J.; Kuhad, R. C.; Lal, B. Evaluation of Inoculum Addition to Stimulate In Situ Bioremediation of Oily-Sludge-Contaminated Soil. Appl. Envirom. Microbiol. 2001, 67(4), 1675–1681. DOI:10.1128/AEM.67.4.1675-1681.2001.
  • Fuentes, S.; Méndez, V.; Aguila, P.; Seeger, M. Bioremediation of Petroleum Hydrocarbons: Catabolic Genes, Microbial Communities and Applications. Appl. Microbiol. Biotechnol. 2014, 98(11), 4781–4794. DOI:10.1007/s00253-014-5684-9.
  • Isaac, P.; Sánchez, L. A.; Bourguignon, N.; Cabral, M. E. Indigenous PAH-Degrading Bacteria from Oil-Polluted Sediments in Caleta Cordova, Patagonia Argentina. Int. Biodeter. Biodegrad. 2013, 82, 207–214. DOI:10.1016/j.ibiod.2013.03.009.
  • Santos, H. F.; Cury, J.; Carmo, F. L.; Santos, A. L.; Tiedje, J.; Elsas, J. D. V.; Rosado, A. S.; Peixoto, R. S. Mangrove Bacterial Diversity and the Impact of Oil Contamination Revealed by Pyrosequencing: Bacterial Proxies for Oil Pollution. Plos One 2011, 6(3), e16943. DOI:10.1371/journal.pone.0016943.
  • Gao, Y. Z.; Ling, W. T.; Wong, M. H. Plant-Accelerated Dissipation of Phenanthrene and Pyrene from Water in the Presence of a Nonionic-Surfactant. Chemosphere 2006, 63(9), 1560–1567. DOI:10.1016/j.chemosphere.2005.09.058.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.