Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 11
1,184
Views
6
CrossRef citations to date
0
Altmetric
Articles

Degradation of ticarcillin by subcritical water oxidation method: Application of response surface methodology and artificial neural network modeling

Pages 975-985 | Received 09 Mar 2018, Accepted 12 Apr 2018, Published online: 18 May 2018

References

  • Kümmerer, K. Antibiotics in the Aquatic Environment – A Review – Part II. Chemosphere 2009, 75, 435–441. DOI: 10.1016/j.chemosphere.2008.12.006.
  • Zwiener, C.; Frimmel, F. H. Oxidative Treatment of Pharmaceuticals in Water. Water Res. 2000, 34(6), 1881–1885. DOI: 10.1016/S0043-1354(99)00338-3.
  • Yabalak, E; Döndaş, H. A.; Gizir, A. M. Subcritical Water Oxidation of 6-Aminopenicillanic Acid and Cloxacillin Using H2O2, K2S2O8, and O2. J. Environ. Sci. Health, Part A 2017, 52, 210–220. DOI: 10.1080/10934529.2016.1246935.
  • Rivera-Utrilla, J.; Sánchez-Polo, M.; Ferro-García, M.Á.; Prados-Joya, G.; Ocampo-Pérez, R. Pharmaceuticals as Emerging Contaminants and their Removal from Water. A Rev. Chemosphere 2013, 93, 1268–1287. DOI: 10.1016/j.chemosphere.2013.07.059.
  • Yabalak, E.; Könen adigüzel, S.; Adigüzel, A.; Ergene, R. S.; Tunçer, M.; Gizir, A. Application of Response Surface Methodology for the Optimization of Oxacillin Degradation by Subcritical Water Oxidation Using H2O2: Genotoxicity and Antimicrobial Activity Analysis of Treated Samples. Desalin. Water Treat. 2017, 81, 186–198 DOI: 10.5004/dwt.2017.21089.
  • Meyera, E.; Gastmeier, P.; Deja, M.; Schwa, F. Antibiotic Consumption and Resistance: Data from Europe and Germany. Int. J. Med. Microbiol. 2013, 303, 388–395. DOI: 10.1016/j.ijmm.2013.04.004.
  • Bailón-Pérez, M. I.; García-Campaña, A. M.; Cruces-Blanco, C.; Olmo Iruela, M. Trace Determination of β;-Lactam Antibiotics in Environmental Aqueous Samples Using off-Line and on-Line Preconcentration in Capillary Electrophoresis. J. Chromatogr. A 2008, 1185, 273–280. DOI: 10.1016/j.chroma.2007.12.088.
  • Cha, J. M.; Yang, S.; Carlson, K. H. Trace Determination of β;-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1115, 46–57 DOI: 10.1016/j.chroma.2006.02.086.
  • Dail, M. K.; Mezyk, S. P. Hydroxyl-Radical-Induced Degradative Oxidation of β;-Lactam Antibiotics in Water: Absolute Rate Constant Measurements. J. Phys. Chem. A 2010, 114, 8391–8395. DOI: 10.1021/jp104509t.
  • Plumb, D. C. Ticarcillin. Veterinary drug handbook, 5th ed.; PharmaVet Inc.: Stockholm, WI, 2005; pp. 758–60.
  • Dietz, J. P.; Sertich, P. L.; Boston, R. C.; Benson, C. E. Comparison of Ticarcillin and Piperacillin in Kenney's Semen Extender. Theriogenology 2007, 68, 848–852. DOI: 10.1016/j.theriogenology.2007.03.031.
  • Hamon, P.; Moulina, P.; Ercolei, L.; Marrot, B. Oncological Ward Wastewater Treatment by Membrane Bioreactor: Acclimation Feasibility and Pharmaceuticals Removal Performances. J. Water Process Eng. 2018, 21, 9–26. DOI: 10.1016/j.jwpe.2017.11.012.
  • Serna-Galvis, E. A.; Silva-Agredo, J.; Giraldo, A. L.; Florez, O. A.; Torres-Palma, R. A. Comparison of Route, Mechanism and Extent of Treatment for the Degradation of a β;-Lactam Antibiotic by TiO2 Photocatalysis, Sonochemistry, Electrochemistry and the Photo-Fenton System. Chem. Eng. J. 2016, 284, 953–962. DOI: 10.1016/j.cej.2015.08.154.
  • He, X.; Mezyk, S. P.; Michael, I.; Fatta-Kassinos, D.; Dionysiou, D. D. Degradation Kinetics and Mechanism of β;-Lactam Antibiotics by the Activation of H2O2 and Na2S2O8 Under UV-254 nm Irradiation. J. Hazard. Mater. 2014, 279, 375–383. DOI: 10.1016/j.jhazmat.2014.07.008.
  • Park, J.; Yamashita, N.; Park, C.; Shimono, T.; Takeuchi, D. M.; Tanaka, H. Removal Characteristics of Pharmaceuticals and Personal Care Products: Comparison Between Membrane Bioreactor and Various Biological Treatment Processes. Chemosphere 2017, 179, 347–358. DOI: 10.1016/j.chemosphere.2017.03.135.
  • Wang, X. C.; Shen, J. M.; Chen, Z. L.; Zhao, X.; Xu, H. Removal of Pharmaceuticals from Synthetic Wastewater in an Aerobic Granular Sludge Membrane Bioreactor and Determination of the Bioreactor Microbial Diversity. Appl. Microbiol. Biotechnol. 2016, 100(18), 8213–8223. DOI: 10.1007/s00253-016-7577-6.
  • Oropesa, A. L.; Beltrán, F. J.; Floro, A. M.; Sagasti, J.J.P.; Palma, P. Ecotoxicological Efficiency of Advanced Ozonation Processes with TiO2 and Black Light Used in the Degradation of Carbamazepine. Environ. Sci. Pollut. Res. 2018, 25(2), 1670–1682. DOI: 10.1007/s11356-017-0602-1.
  • Ana, V. D.; Duarte, C.; Barreiros, M.; Carvalho, A.J.P.; Pinto, A. P.; Costa, C. T. Toxicity and Removal Efficiency of Pharmaceutical Metabolite Clofibric Acid by Typha spp.-Potential use for Phytoremediation? Bioresour. Technol. 2009, 100(3), 1156–1161. DOI: 10.1016/j.biortech.2008.08.034.
  • Zhao, Y.; Yin, B.; Zhang, G.; Shi, W. Facile Fabrication of Plate-Like Bi3O4Cl for Visible-Light-Driven Photocatalytic Degradation of Tetracycline Hydrochloride. Micro Nano Lett. 2018, 13(1), 9–11. DOI: 10.1049/mnl.2017.0490.
  • Tian, L.; Bayen, S. Thermal Degradation of Chloramphenicol in Model Solutions, Spiked Tissues and Incurred Samples. Food Chem. 2018, 248, 230–237. DOI: 10.1016/j.foodchem.2017.12.043.
  • Levec, J.; Pintar, A. Catalytic Wet-Air Oxidation Processes: A Review. Catal. Today 2007, 124, 172–184. DOI: 10.1016/j.cattod.2007.03.035.
  • Yabalak, E.; Görmez, Ö.; Gözmen Sönmez, B. Degradation, Dephenolisation and Dearomatisation of Olive Mill Wastewater by Subcritical Water Oxidation Method Using Hydrogen Peroxide: Application of Multi-Response Central Composite Design. J. Serb. Chem. Soc. 2018, 83, 489–502.
  • Yabalak, E.; Gizir, A. M. Subcritical and Supercritical Fluid Extraction of Heavy Metals from Sand and Sewage Sludge. J. Serb. Chem. Soc. 2013, 78, 1013–1022. DOI: 10.2298/JSC120321123Y.
  • Izadiyan, P.; Hemmateenejad, B. Multi-Response Optimization of Factors Affecting Ultrasonic Assisted Extraction from Iranian Basil Using Central Composite Design. Food Chem. 2016, 190, 864–870. DOI: 10.1016/j.foodchem.2015.06.036.
  • Pilkington, J. L.; Preston, C.; Gomes, R. L. Comparison of Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) Towards Efficient Extraction of Artemisinin from Artemisia Annua. Ind. Crops Prod. 2014, 58, 15–24. DOI: 10.1016/j.indcrop.2014.03.016.
  • Lin, J. A.; Kuo, C. H.; Chen, B. Y.; Li, Y.; Liu, Y. C.; Chen, J. H.; Shieh, C. J. A Novel Enzyme-Assisted Ultrasonic Approach for Highly Efficient Extraction of Resveratrol from Polygonum Cuspidatum. Ultrason. Sonochem. 2016, 32, 258–264. DOI: 10.1016/j.ultsonch.2016.03.018.
  • Llop, A.; Pocurull, E.; Borrull, F. Evaluation of the Removal of Pollutants from Petrochemical Wastewater Using a Membrane Bioreactor Treatment Plant. Water Air Soil Poll. 2009, 197, 349–359. DOI: 10.1007/s11270-008-9816-7.
  • Yabalak, E.; Görmez, Ö.; Gizir, A. M. Subcritical Water Oxidation of Propham by H2O2 Using Response Surface Methodology (RSM). J. Environ. Sci. Health, Part B 2017, 53, 334–339. DOI: 10.1080/03601234.2018.1431468.
  • Krowiak, A. W.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of Response Surface Methodology and Artificial Neural Network Methods in Modelling and Optimization of Biosorption Process. Bioresour. Technol. 2014, 160, 150–160. DOI: 10.1016/j.biortech.2014.01.021.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Mothodology as a Tool for Optimization in Analytical Chemistry Talanta. 2008, 76, 965–977.
  • Desai, K. M.; Survase, S. A.; Saudagar, P. S.; Lele, S. S.; Singhal, R. S. Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan. Biochem. Eng. J. 2008, 41, 266–273. DOI: 10.1016/j.bej.2008.05.009.
  • Hsu, K. L.; Gupta, H. V.; Sorooshian, S. Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resour. Res. 1995, 31(10), 2517–2530. DOI: 10.1029/95WR01955.
  • Hammami, S.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. Oxidative Degradation of Direct Orange 61 by Electro-Fenton Process Using a Carbon Felt Electrode: Application of the Experimental Design Methodology. J. Electroanal. Chem. 2007, 610, 75–84. DOI: 10.1016/j.jelechem.2007.07.004.
  • Dubber, D.; Gray, N. F. Replacement of Chemical Oxygen Demand (COD) with Total Organic Carbon (TOC) for Monitoring Wastewater Treatment Performance to Minimize Disposal of Toxic Analytical Waste. J. Environ. Sci. Health A 2010, 45, 1595–1600. DOI: 10.1080/10934529.2010.506116.
  • Anderson, M. J.; Whitcomb, P. J. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments; New York, 2005.
  • Design-Expert Software. Version 9.0.6.2, Stat-Ease, 2021 East Hennepin ave, suite 480 Minneapolis, MN 55413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.