Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 12
210
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Silver nanoparticles decorated eggshell membrane as an effective platform for interference free sensing of dopamine

, &
Pages 1048-1055 | Received 15 Feb 2018, Accepted 21 Apr 2018, Published online: 05 Jun 2018

References

  • Ud-Daula, A.; Pfister, G.; Schramm, K.-W. Growth Inhibition and Biodegradation of Catecholamines in the Ciliated Protozoan Tetrahymena pyriformis. J. Environ. Sci. Health., Part A. 2008, 43, 1610–1617. doi:10.1080/10934520802329885.
  • Costa, C.; Parnetti, L.; D'Amelio, M.; Tozzi, A.; Tantucci, M.; Romigi, A.; Siliquini, S.; Cavallucci, V.; Di Filippo, M.; Mazzocchetti, P. Epilepsy, Amyloid-β, and D1 Dopamine Receptors: A Possible Pathogenetic Link? Neurobiol. Aging. 2016, 48, 161–171. doi:10.1016/j.neurobiolaging.2016.08.025.
  • Merims, D.; Giladi, N. Dopamine Dysregulation Syndrome, Addiction and Behavioral Changes in Parkinson's Disease. Parkinsonism Relat Disord. 2008, 14, 273–280. doi:10.1016/j.parkreldis.2007.09.007.
  • Sajid, M.; Nazal, M. K.; Mansha, M.; Alsharaa, A.; Jillani, S. M. S.; Basheer, C. Chemically Modified Electrodes for Electrochemical Detection of Dopamine in the Presence of Uric Acid and Ascorbic Acid: A Review. Trends Analyt Chem. 2016, 76, 15–29. doi:10.1016/j.trac.2015.09.006.
  • Downard, A. J.; Roddick, A. D.; Bond, A. M. Covalent modification of carbon electrodes for voltammetric differentiation of dopamine and ascorbic acid. Anal. Chim. Acta. 1995, 317, 303–310. doi:10.1016/0003-2670(95)00397-5.
  • Cudjoe, E.; Pawliszyn, J. Optimization of Solid Phase Microextraction Coatings for Liquid Chromatography Mass Spectrometry Determination of Neurotransmitters. J. Chromatogr. A. 2014, 1341, 1–7. doi:10.1016/j.chroma.2014.03.035.
  • Musshoff, F.; Schmidt, P.; Dettmeyer, R.; Priemer, F.; Jachau, K.; Madea, B. Determination of Dopamine and Dopamine-Derived (R)-/(S)-Salsolinol and Norsalsolinol in Various Human Brain Areas Using Solid-Phase Extraction and Gas Chromatography/Mass Spectrometry. Forensic Sci. Int. 2000, 113, 359–366. doi:10.1016/S0379-0738(00)00225-5.
  • Fan, X.; Feng, Y.; Su, Y.; Zhang, L.; Lv, Y. A Green Solid-Phase Method for Preparation of Carbon Nitride Quantum Dots and Their Applications in Chemiluminescent Dopamine Sensing. RSC Adv. 2015, 5, 55158–55164. doi:10.1039/C5RA05397H.
  • Garrido, J. M.; Melle-Franco, M.; Strutyński, K.; Borges, F.; Brett, C. M.; Garrido, E. M. P. β–Cyclodextrin Carbon Nanotube-Enhanced Sensor for Ciprofloxacin Detection. J. Environ. Sci. Health., Part A. 2017, 52, 313–319. doi:10.1080/10934529.2016.1258864.
  • Silwana, B.; Van Der Horst, C.; Iwuoha, E.; Somerset, V. A Brief Review on Recent Developments of Electrochemical Sensors in Environmental Application for PGMs. J. Environ. Sci. Health., Part A. 2016, 51, 1233–1247. doi:10.1080/10934529.2016.1212562.
  • Silwana, B.; Van Der Horst, C.; Iwuoha, E.; Somerset, V. Amperometric Determination of Cadmium, Lead, and Mercury Metal Ions Using a Novel Polymer Immobilised Horseradish Peroxidase Biosensor System. J. Environ. Sci. Health., Part A. 2014, 49, 1501–1511. doi:10.1080/10934529.2014.937169.
  • Cai, W.; Lai, T.; Du, H.; Ye, J. Electrochemical Determination of Ascorbic Acid, Dopamine and Uric Acid Based on an Exfoliated Graphite Paper Electrode: A High Performance Flexible Sensor. Sens Actuators B. 2014, 193, 492–500. doi:10.1016/j.snb.2013.12.004.
  • Raoof, J. B.; Ojani, R.; Baghayeri, M. A Selective Sensor Based on a Glassy Carbon Electrode Modified With Carbon Nanotubes and Ruthenium Oxide/Hexacyanoferrate Film for Simultaneous Determination of Ascorbic Acid, Epinephrine And Uric Acid. Anal. Methods. 2011, 3, 2367–2373. doi:10.1039/c1ay05305a.
  • Ahn, M.; Kim, J. Electrochemical Behavior of Dopamine and Ascorbic Acid at Dendritic Au Rod Surfaces: Selective Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid. J. Electroanal. Chem. 2012, 683, 75–79. doi:10.1016/j.jelechem.2012.08.012.
  • Łuczak, T. Preparation and Characterization of the Dopamine Film Electrochemically Deposited on a Gold Template and its Applications for Dopamine Sensing in Aqueous Solution. Electrochim. Acta. 2008, 53, 5725–5731. doi:10.1016/j.electacta.2008.03.052.
  • Li, Y.; Liu, J.; Liu, M.; Yu, F.; Zhang, L.; Tang, H.; Ye, B.-C.; Lai, L. Fabrication of Ultra-Sensitive and Selective Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer Modified Graphene@ Carbon Nanotube Foam. Electrochem commun. 2016, 64, 42–45. doi:10.1016/j.elecom.2016.01.009.
  • Khudaish, E. A.; Al-Nofli, F.; Rather, J. A.; Al-Hinaai, M.; Laxman, K.; Kyaw, H. H.; Al-Harthy, S. Sensitive and Selective Dopamine Sensor Based on Novel Conjugated Polymer Decorated with Gold Nanoparticles. J. Electroanal. Chem. 2016, 761, 80–88. doi:10.1016/j.jelechem.2015.12.011.
  • Mao, H.; Liang, J.; Zhang, H.; Pei, Q.; Liu, D.; Wu, S.; Zhang, Y.; Song, X.-M. Poly (ionic liquids) Functionalized Polypyrrole/Graphene Oxide Nanosheets for Electrochemical Sensor to Detect Dopamine in the Presence of Ascorbic Acid. Biosens. Bioelectron. 2015, 70, 289–298. doi:10.1016/j.bios.2015.03.059.
  • Peik-See, T.; Pandikumar, A.; Nay-Ming, H.; Hong-Ngee, L.; Sulaiman, Y. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode. Sensors. 2014, 14, 15227–15243. doi:10.3390/s140815227.
  • Yuan, D.; Chen, S.; Yuan, R.; Zhang, J.; Liu, X. An ECL Sensor for Dopamine Using Reduced Graphene Oxide/Multiwall Carbon Nanotubes/Gold Nanoparticles. Sens Actuators B Chem. 2014, 191, 415–420. doi:10.1016/j.snb.2013.10.013.
  • Wang, W.; Xu, G.; Cui, X. T.; Sheng, G.; Luo, X. Enhanced Catalytic and Dopamine Sensing Properties of Electrochemically Reduced Conducting Polymer Nanocomposite Doped with Pure Graphene Oxide. Biosens. Bioelectron. 2014, 58, 153–156. doi:10.1016/j.bios.2014.02.055.
  • Guo, S.; Dong, S. Biomolecule-Nanoparticle Hybrids for Electrochemical Biosensors. TrAC, Trends Anal. Chem. 2009, 28, 96–109. doi:10.1016/j.trac.2008.10.014.
  • Li, Y.; Li, Y.; Yang, Y. A New Amperometric H2O2 Biosensor Based on Nanocomposite Films of Chitosan–MWNTs, Hemoglobin, and Silver Nanoparticles. J Solid State Electrochem. 2012, 16, 1133–1140. doi:10.1007/s10008-011-1503-8.
  • Kaur, B.; Pandiyan, T.; Satpati, B.; Srivastava, R. Simultaneous and Sensitive Determination of Ascorbic Acid, Dopamine, Uric Acid, and Tryptophan with Silver Nanoparticles-Decorated Reduced Graphene Oxide Modified Electrode. Colloids Surf. B. 2013, 111, 97–106. doi:10.1016/j.colsurfb.2013.05.023.
  • Tashkhourian, J.; Nezhad, M. H.; Khodavesi, J.; Javadi, S. Silver Nanoparticles Modified Carbon Nanotube Paste Electrode for Simultaneous Determination of Dopamine and Ascorbic Acid. J. Electroanal. Chem. 2009, 633, 85–91. doi:10.1016/j.jelechem.2009.04.028.
  • Lin, Y.; Yin, M.; Pu, F.; Ren, J.; Qu, X. DNA‐Templated Silver Nanoparticles as a Platform for Highly Sensitive and Selective Fluorescence Turn‐on Detection of Dopamine. Small. 2011, 7, 1557–1561. doi:10.1002/smll.201002351.
  • Chen, Z.; Zhang, C.; Wu, Q.; Li, K.; Tan, L. Application of Triangular Silver Nanoplates for Colorimetric Detection of H 2 O 2. Sens Actuators B Chem. 2015, 220, 314–317. doi:10.1016/j.snb.2015.05.085.
  • Gąsecka, M.; Mleczek, M.; Drzewiceka, K.; Magdziak, Z.; Rissmann, I.; Chadzinikolau, T.; Golinski, P. Physiological and Morphological Changes in Salix Viminalis L. as a Result of Plant Exposure to Copper. J. Environ. Sci. Health., Part A. 2012, 47, 548–557. doi:10.1080/10934529.2012.650557.
  • Teng, Y.; Jia, X.; Li, J.; Wang, E. Ratiometric Fluorescence Detection of Tyrosinase Activity and Dopamine Using Thiolate-Protected Gold Nanoclusters. Anal. Chem. 2015, 87, 4897–4902. doi:10.1021/acs.analchem.5b00468.
  • Baláž, M. Eggshell Membrane Biomaterial as a Platform for Applications in Materials Science. Acta Biomater. 2014, 10, 3827–3843. doi:10.1016/j.actbio.2014.03.020.
  • Datta, S.; Kanjilal, B.; Sarkar, P. Electrochemical Sensor for Detection of Polyphenols in Tea and Wine with Differential Pulse Voltammetry and Electrochemical Impedance Spectroscopy Utilizing Tyrosinase and Gold Nanoparticles Decorated Biomembrane. J. Electrochem. Soc. 2017, 164, B118–B126. doi:10.1149/2.0971704jes.
  • Liang, M.; Su, R.; Qi, W.; Yu, Y.; Wang, L.; He, Z. Synthesis of Well-Dispersed Ag Nanoparticles on Eggshell Membrane for Catalytic Reduction of 4-Nitrophenol. J. Mater. Sci. 2014, 49, 1639–1647. Electroanalysis, 2006, 18, 1463–1470.
  • Badawy, A. M. E.; Luxton, T. P.; Silva, R. G.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ. Sci. Techno. 2010, 44, 1260–1266. doi:10.1021/es902240k.
  • Saha, S.; Sarkar, P.; Turner, A. P. Interference‐Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. Electroanalysis. 2014, 26, 2197–2206. doi:10.1002/elan.201400332.
  • Yao, Z.; Yang, X.; Niu, Y.; Wu, F.; Hu, Y.; Yang, Y. Voltammetric Dopamine Sensor Based on a Gold Electrode Modified with Reduced Graphene Oxide and Mn3O4 on Gold Nanoparticles. Microchim. Acta. 2017, 1–8.
  • Zhao, L.; Cai, Z.; Yao, Q.; Zhao, T.; Lin, H.; Xiao, Y.; Chen, X. Electropolymerization Fabrication of Three-Dimensional N, P-co-Doped Carbon Network as a Flexible Electrochemical Dopamine Sensor. Sens Actuators B Chem. 2017, 253, 1113–1119. doi:10.1016/j.snb.2017.06.111.
  • Cheng, M.; Zhang, X.; Wang, M.; Huang, H.; Ma, J. A Facile Electrochemical Sensor Based on Well-Dispersed Graphene-Molybdenum Disulfide Modified Electrode for Highly Sensitive Detection of Dopamine. J. Electroanal. Chem. 2017, 786, 1–7. doi:10.1016/j.jelechem.2017.01.012.
  • Shen, J.; Sun, C.; Wu, X. Silver Nanoprisms-Based Tb (III) Fluorescence Sensor for Highly Selective Detection of Dopamine. Talanta. 2017, 165, 369–376. doi:10.1016/j.talanta.2016.12.073.
  • Teng, Y.; Liu, F.; Kan, X. Voltammetric Dopamine Sensor Based Onthree-Dimensional Electrosynthesized Molecularly Imprinted Polymers Andpolypyrrole Nanowires. Microchim. Acta. 2017, 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.