Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 7
177
Views
3
CrossRef citations to date
0
Altmetric
Articles

Agglomeration of 10 nm amine-functionalized nano-magnetite does not hinder its efficiency as an environmental adsorbent

&
Pages 648-656 | Received 22 Aug 2018, Accepted 28 Jan 2019, Published online: 04 Apr 2019

References

  • Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard. Mater. 2012, 217–218, 439–446. DOI: 10.1016/j.jhazmat.2012.03.073.
  • Culita, D. C.; Simonescu, C. M.; Patescu, R.-E.; Dragne, M.; Stanica, N.; Oprea, O. o-Vanillin Functionalized Mesoporous Silica-Coated Magnetite Nanoparticles for Efficient Removal of Pb(II) From Water. J. Solid State Chem. 2016, 238, 311–320. DOI: 10.1016/j.jssc.2016.04.003.
  • Hu, J.; Lo, I. M. C.; Chen, G. Removal of Cr(VI) by Magnetite Nanoparticle. Water Sci. Technol. 2004, 50, 139–146.
  • Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M. R.; Santamaría, J. Magnetic Nanoparticles for Drug Delivery. Nano Today 2007, 2, 22–32. DOI: 10.1016/S1748-0132(07)70084-1.
  • Sun, C.; Lee, J. S. H.; Zhang, M. Magnetic Nanoparticles in MR Imaging and Drug Delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. DOI: 10.1016/j.addr.2008.03.018.
  • Yallapu, M. M.; Othman, S. F.; Curtis, E. T.; Gupta, B. K.; Jaggi, M.; Chauhan, S. C. Multi-Functional Magnetic Nanoparticles for Magnetic Resonance Imaging and Cancer Therapy. Biomaterials 2011, 32, 1890–1905. DOI: 10.1016/j.biomaterials.2010.11.028.
  • Varshney, M.; Li, Y. Interdigitated Array Microelectrode Based Impedance Biosensor Coupled with Magnetic Nanoparticle–Antibody Conjugates for Detection of Escherichia coli O157:H7 in Food Samples. Biosens. Bioelectron. 2007, 22, 2408–2414. DOI: 10.1016/j.bios.2006.08.030.
  • Petcharoen, K.; Sirivat, A. Synthesis and Characterization of Magnetite Nanoparticles via the Chemical Co-precipitation Method. Mater. Sci. Eng. B 2012, 177, 421–427. DOI: 10.1016/j.mseb.2012.01.003.
  • Gupta, A. K.; Gupta, M. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials 2005, 26, 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.
  • Haw, C. Y.; Mohamed, F.; Chia, C. H.; Radiman, S.; Zakaria, S.; Huang, N. M.; Lim, H. N. Hydrothermal Synthesis of Magnetite Nanoparticles as MRI Contrast Agents. Ceram. Int. 2010, 36, 1417–1422. DOI: 10.1016/j.ceramint.2010.02.005.
  • Wang, J.; Yao, M.; Xu, G.; Cui, P.; Zhao, J. Synthesis of Monodisperse Nanocrystals of High Crystallinity Magnetite Through Solvothermal Process. Mater. Chem. Phys. 2009, 113, 6–9. DOI: 10.1016/j.matchemphys.2008.07.080.
  • Lee, J.; Isobe, T.; Senna, M. Preparation of Ultrafine Fe3O4 Particles by Precipitation in the Presence of PVA at High pH. J. Colloid Interface Sci. 1996, 177, 490–494. DOI: 10.1006/jcis.1996.0062.
  • Nedkov, I.; Merodiiska, T.; Slavov, L.; Vandenberghe, R. E.; Kusano, Y.; Takada, J. Surface Oxidation, Size and Shape of Nano-Sized Magnetite Obtained by Co-precipitation. J. Magn. Magn. Mater. 2006, 300, 358–367. DOI: 10.1016/j.jmmm.2005.05.020.
  • Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and Magnetic Properties of Magnetite Nanoparticles by Sol–gel Method. J. Magn. Magn. Mater. 2007, 309, 307–311. DOI: 10.1016/j.jmmm.2006.07.037.
  • Roca, A. G.; Veintemillas-Verdaguer, S.; Port, M.; Robic, C.; Serna, C. J.; Morales, M. P. Effect of Nanoparticle and Aggregate Size on the Relaxometric Properties of MR Contrast Agents Based on High Quality Magnetite Nanoparticles. J. Phys. Chem. B 2009, 113, 7033–7039. DOI: 10.1021/jp807820s.
  • Liang, J.; Ma, H.; Luo, W.; Wang, S. Synthesis of Magnetite Submicrospheres With Tunable Size and Superparamagnetism by a Facile Polyol Process. Mater. Chem. Phys. 2013, 139, 383–388. DOI: 10.1016/j.matchemphys.2012.10.027.
  • Yu, W. W.; Falkner, J. C.; Yavuz, C. T.; Colvin, V. L. Synthesis of Monodisperse Iron Oxide Nanocrystals by Thermal Decomposition of Iron Carboxylate Salts. Chem. Commun. 2004, 2306–2307. DOI: 10.1039/b409601k.
  • Daou, T. J.; Pourroy, G.; Bégin-Colin, S.; Grenèche, J. M.; Ulhaq-Bouillet, C.; Legaré, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chem. Mater. 2006, 18, 4399–4404. DOI: 10.1021/cm060805r.
  • Zhu, L.-P.; Xiao, H.-M.; Zhang, W.-D.; Yang, G.; Fu, S.-Y. One-Pot Template-Free Synthesis of Monodisperse and Single-Crystal Magnetite Hollow Spheres by a Simple Solvothermal Route. Cryst. Growth Des. 2008, 8, 957–963. DOI: 10.1021/cg700861a.
  • Oveisi, F.; Nikazar, M.; Razzaghi, M. H.; Mirrahimi, M. A.-S.; Jafarzadeh, M. T. Effective Removal of Mercury From Aqueous Solution Using Thiol-Functionalized Magnetic Nanoparticles. Environ. Nanotechnol. Monit. Manag. 2017, 7, 130–138. DOI: 10.1016/j.enmm.2017.01.004.
  • Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li, H. Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles. Chem. Eng. J. 2012, 184, 132–140. DOI: 10.1016/j.cej.2012.01.016.
  • Huang, Y.-F.; Wang, Y.-F.; Yan, X.-P. Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens. Environ. Sci. Technol. 2010, 44, 7908–7913. DOI: 10.1021/es102285n.
  • Chan, C. C. P.; Gallard, H.; Majewski, P. Fabrication of Amine-Functionalized Magnetite Nanoparticles for Water Treatment Processes. J. Nanopart. Res. 2012, 14, 828.
  • Zhang, Y.; Kuang, M.; Zhang, L.; Yang, P.; Lu, H. An Accessible Protocol for Solid-Phase Extraction of N-Linked Glycopeptides Through Reductive Amination by Amine-Functionalized Magnetic Nanoparticles. Anal. Chem. 2013, 85, 5535–5541. DOI: 10.1021/ac400733y.
  • Kim, L.-J.; Jang, J.-W.; Park, J.-W. Nano TiO2-Functionalized Magnetic-Cored Dendrimer as a Photocatalyst. Appl. Catal. B: Environ. 2014, 147, 973–979. DOI: 10.1016/j.apcatb.2013.10.024.
  • Kim, H.-R.; Jang, J.-W.; Park, J.-W. Carboxymethyl Chitosan-Modified Magnetic-Cored Dendrimer as an Amphoteric Adsorbent. J. Hazard. Mater. 2016, 317, 608–616. DOI: 10.1016/j.jhazmat.2016.06.025.
  • Jung, J.-J.; Jang, J.-W.; Park, J.-W. Effect of Generation Growth on Photocatalytic Activity of Nano TiO2-Magnetic Cored Dendrimers. J. Ind. Eng. Chem. 2016, 44, 52–59. DOI: 10.1016/j.jiec.2016.08.007.
  • Huang, J.; Su, P.; Zhou, L.; Yang, Y. Grafting l-Valine on Polyamidoamine Dendrimer-Modified Magnetic Microspheres for Enantioselective Adsorption of Dansyl Amino Acids. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 241–249. DOI: 10.1016/j.colsurfa.2015.11.058.
  • Wang, P.; Ma, Q.; Hu, D.; Wang, L. Removal of Reactive Blue 21 onto Magnetic Chitosan Microparticles Functionalized with Polyamidoamine Dendrimers. React. Funct. Polym. 2015, 91–92, 43–50. DOI: 10.1016/j.reactfunctpolym.2015.04.007.
  • Zarghami, Z.; Akbari, A.; Latifi, A. M.; Amani, M. A. Design of a New Integrated Chitosan-PAMAM Dendrimer Biosorbent for Heavy Metals Removing and Study of Its Adsorption Kinetics and Thermodynamics. Bioresour. Technol. 2016, 205, 230–238.
  • Bian, S.-W.; Liu, S.; Chang, L. Synthesis of Magnetically Recyclable Fe3O4@polydopamine–Pt Composites and Their Application in Hydrogenation Reactions. J. Mater. Sci. 2016, 51, 3643–3649. DOI: 10.1007/s10853-015-9688-3.
  • Lin, S.; Liu, L.; Yang, Y.; Lin, K. Study on Preferential Adsorption of Cationic-Style Heavy Metals Using Amine-functionalized Magnetic Iron Oxide Nanoparticles (MIONPs-NH2) as Efficient Adsorbents. Appl. Surf. Sci. 2017, 407, 29–35. DOI: 10.1016/j.apsusc.2017.02.173.
  • Ma, M.; Zhang, Y.; Yu, W.; Shen, H.-Y.; Zhang, H.-Q.; Gu, N. Preparation and Characterization of Magnetite Nanoparticles Coated by Amino Silane. Colloids Surf. A Physicochem. Eng. Asp. 2003, 212, 219–226. DOI: 10.1016/S0927-7757(02)00305-9.
  • Liu, Y.; Zhang, K.; Yin, X.; Yang, W.; Zhu, H. Highly Reusability Surface Loaded Metal Particles Magnetic Catalyst Microspheres (MCM-MPs) for Treatment of Dye-Contaminated Water. J. Magn. Magn. Mater. 2016, 403, 18–29. DOI: 10.1016/j.jmmm.2015.11.071.
  • Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-Functionalized Fe3O4@SiO2 Core–Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interface Sci. 2010, 349, 293–299. DOI: 10.1016/j.jcis.2010.05.010.
  • Zhang, W.; Chen, L.; Xu, L.; Dong, H.; Hu, H.; Xiao, Y.; Zheng, M.; Liu, Y.; Liang, Y. Advanced Nanonetwork-Structured Carbon Materials for High-Performance Formaldehyde Capture. J. Colloid Interface Sci., 2019, 537, 562–568.
  • Ho, Y.-S. Second-Order Kinetic Model for the Sorption of Cadmium onto Tree Fern: A Comparison of Linear and Non-Linear Methods. Water Res. 2006, 40, 119–125. DOI: 10.1016/j.watres.2005.10.040.
  • Chou, C.-M.; Lien, H.-L. Dendrimer-Conjugated Magnetic Nanoparticles for Removal of Zinc (II) From Aqueous Solutions. J. Nanopart. Res. 2011, 13, 2099–2107. DOI: 10.1007/s11051-010-9967-5.
  • Liu, J.; Legros, S.; Ma, G.; Veinot, J. G. C.; von der Kammer, F.; Hofmann, T. Influence of Surface Functionalization and Particle Size on the Aggregation Kinetics of Engineered Nanoparticles. Chemosphere 2012, 87, 918–924. DOI: 10.1016/j.chemosphere.2012.01.045.
  • Kim, K.-J.; Park, J.-W. Stability and Reusability of Amine-Functionalized Magnetic-Cored Dendrimer for Heavy Metal Adsorption. J. Mater. Sci., 2017, 52, 843–857.
  • Halnor, S. Removal of Heavy Metals from Wastewater: A Review. Int. J. Appl. Innov. Eng. Manag. (IJAIEM), 2015, 4, 19–22.
  • Momčilović, M.; Purenović, M.; Bojić, A.; Zarubica, A.; Ranđelović, M. Removal of Lead(II) ions From Aqueous Solutions by Adsorption onto Pine Cone Activated Carbon. Desalination 2011, 276, 53–59. DOI: 10.1016/j.desal.2011.03.013.
  • Goel, J.; Kadirvelu, K.; Rajagopal, C.; Kumar Garg, V. Removal of Lead(II) by Adsorption Using Treated Granular Activated Carbon: Batch and Column Studies. J. Hazard. Mater. 2005, 125, 211–220. DOI: 10.1016/j.jhazmat.2005.05.032.
  • Huang, Z.-H.; Zheng, X.; Lv, W.; Wang, M.; Yang, Q.-H.; Kang, F. Adsorption of Lead(II) Ions From Aqueous Solution on Low-Temperature Exfoliated Graphene Nanosheets. Langmuir 2011, 27, 7558–7562. DOI: 10.1021/la200606r.
  • Perić, J.; Trgo, M.; Vukojević Medvidović, N. Removal of Zinc, Copper and Lead by Natural Zeolite – A Comparison of Adsorption Isotherms. Water Res. 2004, 38, 1893–1899. DOI: 10.1016/j.watres.2003.12.035.
  • Kumari, M.; Pittman, C. U.; Mohan, D. Heavy Metals [chromium (VI) and Lead (II)] Removal From Water Using Mesoporous Magnetite (Fe3O4) Nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132. DOI: 10.1016/j.jcis.2014.09.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.