Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 8
368
Views
12
CrossRef citations to date
0
Altmetric
Articles

Emerging disinfection by-products’ formation potential in raw water, wastewater, and treated wastewater in Thailand

&
Pages 745-758 | Received 25 Sep 2018, Accepted 26 Feb 2019, Published online: 30 Apr 2019

References

  • Butterworth, B. E. Science-Based Risk Assessments For Drinking Water Disinfection By-Products. Environ. Res. 2005, 98, 276–278. DOI: 10.1016/j.envres.2004.06.009.
  • Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D. Occurrence of a New Generation of Disinfection Byproducts. Environ. Sci. Technol. 2006, 40, 7175–7185.
  • Shanks, C. M.; Sérodes, J. B.; Rodriguez, M. J. Spatio-Temporal Variability Of Non-Regulated Disinfection by-Products within a Drinking Water Distribution Network. Water Res. 2013, 47, 3231–3243. DOI: 10.1016/j.watres.2013.03.033.
  • US EPA. Integrated Risk Information System (IRIS). 2011. Available at http://cfpub.epa.gov/ncea/iris/index.cfm (Accessed March 2017).
  • EECD. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Commun. 1998, L330, 32–54.
  • US EPA. National Primary Drinking Water Regulations: Stage 2 Disinfectants and Disinfectant Byproducts; Final Rule. Part II 40 CFR Parts 2006, 9, 141–142.
  • WHO. Guidelines for Drinking Water Quality, First Addendum to the 3rd ed.; Vol. 1; World Health Organization: Geneva, 2006; pp. 491–492.
  • Richardson, S. D.; Fasano, F.; Ellington, J. J.; Crumley, F. G.; Buettner, K. M.; Evans, J. J.; Blount, B. C.; Silva, L. K.; Waite, T. J.; Luther, G. W.; et al. Occurrence and Mammalian Cell Toxicity Of Iodinated Disinfection Byproducts in Drinking Water. Environ. Sci. Technol. 2008, 42, 8330–8338. DOI: 10.1021/es801169k.
  • Tugulea, A. M.; Aranda-Rodriguez, R.; Berub, D.; Giddings, M.; Lemieux, F.; Hnatiw, J.; Dabeka, L.; Breton, F. The Influence of Precursors and Treatment Process on the Formation of Iodo-THMs in Canadian Drinking Water. Water Res. 2018, 130, 215–223. DOI: 10.1016/j.watres.2017.11.055.
  • Gong, T.; Zhang, X. Detection, Identification and Formation of New Iodinated Disinfection Byproducts in Chlorinated Saline Wastewater Effluents. Water Res. 2015, 68, 77–86. DOI: 10.1016/j.watres.2014.09.041.
  • Zhang, T. Y.; Xu, B.; Hu, C. Y.; Lin, Y. L.; Lin, L.; Ye, T.; Tian, F. X. A Comparison of Iodinated Trihalomethane Formation from Chlorine, Chlorine Dioxide and Potassium Permanganate Oxidation Processes. Water Res. 2015, 68, 394–403. DOI: 10.1016/j.watres.2014.09.040.
  • Muellner, M. G.; Wagner, E. D.; McCalla, K.; Richardson, S. D.; Woo, Y. T.; Plewa, M. J. Haloacetonitriles vs. Regulated Haloacetic Acids: Are Nitrogen-Containing DBPs More Toxic? Environ. Sci. Technol. 2007, 41, 645–651. DOI: 10.1021/es0617441.
  • Lee, W.; Westerhoff, P. Dissolved Organic Nitrogen Removal During Water Treatment by Aluminium Sulfate and Cationic Polymer Coagulation. Water Res. 2006, 40, 3767–3774. DOI: 10.1016/j.watres.2006.08.008.
  • Chen, B.; Westerhoff, P. Predicting Disinfection By-Product Formation Potential in Water. Water Res. 2010, 44, 3755–3762. DOI: 10.1016/j.watres.2010.04.009.
  • WHO. Guidelines for Drinking Water Quality. In Recommendations; 3rd ed.; World Health Organization: Geneva, Switzerland, 2008; Vol. 1.
  • Plewa, M. J.; Wagner, E. D.; Jazwierska, P.; Richardson, S. J.; Chen, P. H.; McKague, A. B. Halonitromethane Drinking Water Disinfection Byproducts: Chemical Characterization and Mammalian Cell Cytotoxicity and Genotoxicity. Environ. Sci. Technol. 2004, 38, 62–68. DOI: 10.1021/es030477l.
  • Jia, A.; Wu, C.; Duan, Y. Precursors and Factors Affecting Formation of Haloacetonitriles and Chloropicrin during Chlor(Am)Ination of Nitrogenous Organic Compounds in Drinking Water. J. Hazard. Mater. 2016, 308, 411–418. DOI: 10.1016/j.jhazmat.2016.01.037.
  • LDD. Land Development Department (LDD), Ministry of Agriculture and Cooperatives 2017. http://www.ldd.go.th/www/lek_web/web.jsp?id=18907 (accessed Jan, 2019).
  • Ito, K.; Ichihara, T.; Zhuo, H.; Kumamoto, K.; Timerbaev, A. R.; Hirokawa, T. Determination of Trace Iodide in Seawater by Capillary Electrophoresis following Transient Isotachophoretic Preconcentration: Comparison with Ion Chromatography. Anal Chim. Acta 2003, 497, 67–74.
  • Chandramouleeswaran, S.; Vijayalakshmi, B.; Kartihkeyan, S.; Rao, T. P.; Iyer, C. S. P. Ion-Chromatographic Determination of Iodide in Sea Water with UV Detection. Mikrochim. Acta 1998, 128, 75–77. DOI: 10.1007/BF01242193.
  • APHA. Standard Methods for the Examination of Water and Wastewater, 20th Ed.; American Public Health Association, AWWA and WEF: Washington DC, 1998.
  • Sinsabaugh, R. L.; Findlay, S. Dissolved Organic Matter: Out of the Black Box into the Mainstream. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter; Findlay, S.; Sinsabaugh, R. L., Eds.; Elsevier Science Inc., USA, 2003; pp 479–498.
  • Hong, H. C.; Huang, F. Q.; Wang, F. Y.; Ding, L. X.; Lin, H. J.; Liang, Y. Properties of Sediment NOM Collected from a Drinking Water Reservoir in South China, and Its Association with THMs and HAAs Formation. J. Hydrol. 2013, 476, 274–279. DOI: 10.1016/j.jhydrol.2012.10.040.
  • Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. DOI: 10.1021/es030360x.
  • Xu, B.; Li, D.; Li, W.; Xia, S.; Lin, Y.; Hu, C.; Zhang, C.; Gao, N. Measurements of Dissolved Organic Nitrogen (DON) in Water Samples with Nanofiltration Pretreatment. Water Res. 2010, 44, 5376–5384. DOI: 10.1016/j.watres.2010.06.034.
  • Pantelaki, I.; Voutsa, D. Formation of Iodinated THMs during Chlorination of Water and Wastewater in the Presence of Different Iodine Sources. Sci. Tot. Environ. 2018, 613–614, 389–397. DOI: 10.1016/j.scitotenv.2017.09.072.
  • Zhang, J.; Chen, D. D.; Li, L.; Li, W. W.; Mu, Y.; Yu, H. Q. Role of NOM Molecular Size on Iodo-Trihalomethane Formation during Chlorination and Chloramination. Water Res. 2016, 102, 533–541. DOI: 10.1016/j.watres.2016.07.007.
  • Bougeard, C. M. M.; Goslan, E. H.; Jefferson, B.; Parsons, S. A. Comparison of the Disinfection by-Product Formation Potential of Treated Waters Exposed to Chlorine and Monochloramine. Water Res. 2010, 44, 729–740. DOI: 10.1016/j.watres.2009.10.008.
  • Song, H.; Addison, J. W.; Hu, J.; Karanfil, T. Halonitromethanes Formation in Wastewater Treatment Plant Effluents. Chemosphere 2010, 79, 174–179. DOI: 10.1016/j.chemosphere.2010.01.001.
  • Urbansky, E. T. Ascorbic Acid Treatment to Reduce Residual Halogen-Based Oxidants Prior to the Determination of Halogenated Disinfection Byproducts in Potable Water. J. Environ. Monit. 1999, 1, 471–476. DOI: 10.1039/a904574k.
  • Munch, D. J.; Hautman, D. P. Method 551.1, Determination of Chlorinated Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid/Liquid Extraction and Gas Chromatography with Electron Capture Detection; USEPA: Cincinnati, OH, 1995.
  • Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J. A.; Downing, B. D.; Bergamaschi, B. A. Optical Properties of Dissolved Organic Matter (DOM): Effects of Biological and Photolytic Degradation. Limnol. Oceanogr. 2016, 61, 1015–1032. DOI: 10.1002/lno.10270.
  • US EPA. Enhanced Coagulation and Enhanced Precipitative Softening Guidance Manual, Office of Water, EPA 815-R-99-012, 1999.
  • Musikavong, C.; Srimuang, K.; Suksaroj, T. T.; Suksaroj, C. Formation of Trihalomethanes of Dissolved Organic Matter Fractions in Reservoir and Canal Waters. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2016, 51, 782–791. DOI: 10.1080/10934529.2016.1178033.
  • Tongchang, P.; Kumsuvan, J.; Phatthalung, N.; Suksaroj, W.; Wongrueng, C.; Musikavong, A. C. Reduction by Enhanced Coagulation of Dissolved Organic Nitrogen as a Precursor of N-Nitrosodimethylamine. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 583–593. DOI: 10.1080/10934529.2018.1428270.
  • Volk, C.; Wood, L.; Johnson, B.; Robinson, J.; Zhu, H. W.; Kaplan, L. Monitoring Dissolved Organic Carbon in Surface and Drinking Waters. J. Environ. Monit. 2002, 4, 43–47. DOI: 10.1039/b107768f.
  • Wang, J. J.; Lafreniere, M. J.; Lamoureux, S. F.; Simpson, A. J.; Gelinas, Y.; Simpson, M. J. Differences in Riverine and Pond Water Dissolved Organic Matter Composition and Sources in Canadian High Arctic Watersheds Affected by Active Layer Detachments. Environ. Sci. Technol. 2018, 52, 1062–1071. DOI: 10.1021/acs.est.7b05506.
  • Liu, X.; Chen, Q.; Zhu, L. Improving Biodegradation Potential of Domestic Wastewater by Manipulating the Size Distribution of Organic Matter. J. Environ. Sci. 2016, 47, 174–182. DOI: 10.1016/j.jes.2016.02.004.
  • Maizel, A. C.; Remucal, C. K. The Effect of Advanced Secondary Municipal Wastewater Treatment on the Molecular Composition of Dissolved Organic Matter. Water Res. 2017, 122, 42–52. DOI: 10.1016/j.watres.2017.05.055.
  • Dotson, A.; Westerhoff, P.; Krasner, S. W. Nitrogen Enriched Dissolved Organic Matter (DOM) Isolates and Their Affinity to Form Emerging Disinfection By-Products. Water Sci. Technol. 2009, 60, 135–143. DOI: 10.2166/wst.2009.333.
  • Plewa, M. J.; Wagner, E. D. Quantitative Comparative Mammalian Cell Cytotoxicity and Genotoxicity of Selected Classes of Drinking Water Disinfection by-Products; Water Research Foundation: Denver, CO, USA, 2009.
  • Krasner, S. W.; Westerhoff, P.; Chen, B.; Rittmann, B. E.; Nam, S. N.; Amy, G. Impact of Wastewater Treatment Processes on Organic Carbon, Organic Nitrogen, and DBP Precursors in Effluent Organic Matter. Environ. Sci. Technol. 2009, 43, 2911–2918. DOI: 10.1021/es802443t.
  • Dotson, A.; Westerhoff, P.; Chen, B.; Lee, W. Organic Nitrogen Occurrence and Characterization. In Disinfection By-Products in Drinking Water: occurrence, Formation, Health Effects, and Control; Karanfil, T.; Krasner, S. W.; Westerhoff, P.; Xie, Y., Eds.; American Chemical Society: Washington, DC, 2008, pp 274–288.
  • Westerhoff, P.; Mash, H. Dissolved Organic Nitrogen in Drinking Water Supplies: A Review. J. Water Supply: Res. Technol. AQUA 2002, 51, 415–488. DOI: 10.2166/aqua.2002.0038.
  • Xu, B.; Ye, T.; Li, D. P.; Hu, C. Y.; Lin, Y. L.; Xia, S. J.; Tian, F. X.; Gao, N. Y. Measurement of Dissolved Organic Nitrogen in a Drinking Water Treatment Plant: Size Fraction, Fate, and Relation to Water Quality Parameters. Sci. Tot. Environ. 2011, 409, 1116–1122. DOI: 10.1016/j.scitotenv.2010.12.016.
  • Chang, H.; Wang, G. Fractionation of Nitrogen-Enriched Dissolved Organic Matter in Water. Sep. Purif. Technol. 2013, 117, 89–97. DOI: 10.1016/j.seppur.2013.04.027.
  • Lee, W.; Westerhoff, P.; Esparza-Soto, M. Occurrence and Removal of Dissolved Organic Nitrogen in US Water Treatment Plants. J. Am. Water Works Assoc. 2006, 98, 102–110. DOI: 10.1002/j.1551-8833.2006.tb07782.x.
  • Lee, W.; Westerhoff, P.; Croue, J. P. Dissolved Organic Nitrogen as a Precursor for Chloroform, Dichloroacetonitrile, N-Nitrosodimethylamine, and Trichloronitromethane. Environ. Sci. Technol. 2007, 41, 5485–5490. DOI: 10.1021/es070411g.
  • Zhang, H.; Zhang, K.; Jin, H.; Gu, L.; Yu, X. Variations in Dissolved Organic Nitrogen Concentration in Biofilters with Different Media during Drinking Water Treatment. Chemosphere 2015, 139, 652–658.
  • Huo, S.; Xi, B.; Yu, H.; Qin, Y.; Zan, F.; Zhang, J. Characteristics and Transformations of Dissolved Organic Nitrogen in Municipal Biological Nitrogen Removal Wastewater Treatment Plants. Environ. Res. Lett. 2013, 8, 044005–0449pp. DOI: 10.1088/1748-9326/8/4/044005.
  • Chu, W.; Gao, N.; Yin, D.; Krasner, S. W. Formation and Speciation of Nine Haloacetamides, an Emerging Class of Nitrogenous DBPs, during Chlorination or Chloramination. J. Hazard. Mater. 2013, 260, 806–812. DOI: 10.1016/j.jhazmat.2013.06.044.
  • Karanfil, T.; Hu, J.; Jones, D. B.; Addison, J. W.; Song, H. Formation of Halonitromethanes and Iodo-Trihalomethanes in Drinking Water; Water Research Foundation: Denver, CO, USA, 2011.
  • Wang, C.; Zhang, X.; Chen, C.; Wang, J. Factors Controlling N-Nitrosodimethylamine (NDMA) Formation from Dissolved Organic Matter. Front. Environ. Sci. Eng. 2013, 7, 151–157. DOI: 10.1007/s11783-013-0482-7.
  • Aiken, G.; Cotsaris, E. Soil and Hydrology: their Effect on NOM. J. Am. Water Works Assoc. 1995, 87, 36–45. DOI: 10.1002/j.1551-8833.1995.tb06299.x.
  • Fan, Z.; Zhang, H.; Xu, X.; Liu, B.; Zhang, D.; Yu, X. Dissolved Organic Nitrogen (DON) in Full Scale Two-Stage O3-BAC with Nitrate as Sole Inorganic Nitrogen Source. Int. J. Environ. Res. 2012, 6, 985–994.
  • Jack, J.; Sellers, T.; Bukaveckas, P. A. Algal Production and Trihalomethane Formation Potential: An Experimental Assessment and Inter-River Comparison. Can. J. Fish. Aquat. Sci. 2002, 59, 1482–1491. DOI: 10.1139/f02-121.
  • Adin, A.; Katzhendler, J.; Alkaslassy, D.; Rav-Acha, C. Trihalomethanes Formation in Chlorinated Drinking Water: A Kinetic Model. Water Res. 1991, 25, 797–805. DOI: 10.1016/0043-1354(91)90159-N.
  • Tokmak, B.; Capar, G.; Dilek, F. B.; Yetis, U. Trihalomethanes and Associated Potential Cancer Risks in the Water Supply in Ankara, Turkey. Environ. Res. 2004, 96, 345–352. DOI: 10.1016/j.envres.2003.11.005.
  • Yang, M.; Zhang, X. Comparative Developmental Toxicity of New Aromatic Halogenated DBPs in a Chlorinated Saline Sewage Effluent to the Marine Polychaete Platynereis Dumerilii. Environ. Sci. Technol. 2013, 47, 10868–10876. DOI: 10.1021/es401841t.
  • Basu, M.; Gupta, S. K.; Singh, G.; Mukhopadhyay, U. Multi-Route Risk Assessment from Trihalomethanes in Drinking Water Supplies. Environ. Monit. Assess. 2011, 178, 121–134. DOI: 10.1007/s10661-010-1677-z.
  • Watson, K.; Farré, M. J.; Birt, J.; McGree, J.; Knight, N. Predictive Models for Water Sources with High Susceptibility for Bromine-Containing Disinfection By-Product Formation: implications for Water Treatment. Environ. Sci. Pollut. Res. 2015, 22, 1963–1978. DOI: 10.1007/s11356-014-3408-4.
  • Cemeli, E.; Wagner, E. D.; Anderson, D.; Richardson, S. D.; Plewa, M. J. Modulation of the Cytotoxicity and Genotoxicity of the Drinking Water Disinfection Byproduct Iodoacetic Acid by Suppressors of Oxidative Stress. Environ. Sci. Technol. 2006, 40, 1878–1883. DOI: 10.1021/es051602r.
  • Goslan, E. H.; Krasner, S. W.; Bower, M.; Rocks, S. A.; Holmes, P.; Levy, L. S.; Parsons, S. A. A Comparison of Disinfection By-Products Found in Chlorinated and Chloraminated Drinking Waters in Scotland. Water Res. 2009, 43, 4698–4706. DOI: 10.1016/j.watres.2009.07.029.
  • Wei, X.; Chen, X.; Wang, X.; Zheng, W.; Zhang, D.; Tian, D.; Jiang, S.; Ong, C. N.; He, G.; Qu, W. Occurrence of Regulated and Emerging Iodinated DBPs in the Shanghai Drinking Water. PLoS One 2013, 8, e59677. DOI: 10.1371/journal.pone.0059677.
  • Wei, Y.; Liu, Y.; Ma, L.; Wang, H.; Fan, J.; Liu, X.; Dai, R. Speciation and Formation of Iodinated Trihalomethanes from Microbially Derived Organic Matter during the Biological Treatment of Micro-Polluted Source Water. Chemosphere 2013, 92, 1529–1535.
  • Ioannou, P.; Charisiadis, P.; Andra, S. S.; Makris, K. C. Occurrence and Variability of Iodinated Trihalomethanes Concentrations within Two Drinking-Water Distribution Networks. Sci. Tot. Environ. 2016, 543, 505–513. DOI: 10.1016/j.scitotenv.2015.10.031.
  • Kim, J.; Chung, Y.; Shin, D.; Kim, M.; Lee, Y.; Lim, Y.; Lee, D. Chlorination by-Products in Surface Water Treatment Process. Desalination 2003, 151, 1–9. DOI: 10.1016/S0011-9164(02)00967-0.
  • Ahmadi, M.; Ramavandi, B. The Formation Potential of Haloacetonitriles in the Dez River Water, Iran. Environ. Technol. 2014, 35, 2347–2355. DOI: 10.1080/09593330.2014.903301.
  • Chu, W.; Gao, N.; Krasner, S. W.; Templeton, M. R.; Yin, D. Formation of Halogenated C-, N-DBPs from Chlor(Am)Ination and UV Irradiation of Tyrosine in Drinking Water. Environ. Pollut. 2012, 161, 8–14. DOI: 10.1016/j.envpol.2011.09.037.
  • Bond, T.; Templeton, M. R.; Kamal, N. H. M.; Graham, N.; Kanda, R. Nitrogenous Disinfection Byproducts in English Drinking Water Supply Systems: Occurrence, Bromine Substitution and Correlation Analysis. Water Res. 2015, 85, 85–94. DOI: 10.1016/j.watres.2015.08.015.
  • Mitch, W. A.; Krasner, S. W.; Westerhoff, P.; Dotson, A. Occurrence and Formation of Nitrogenous Disinfection by-Products; Water Research Foundation: Denver, CO, USA, 2009.
  • Yang, X.; Guo, W.; Shen, Q. Formation of Disinfection Byproducts from Chlor(Am)Ination of Algal Organic Matter. J. Hazard. Mater. 2011, 197, 378–388. DOI: 10.1016/j.jhazmat.2011.09.098.
  • Yang, X.; Shen, Q.; Guo, W.; Peng, J.; Liang, Y. Precursors and Nitrogen Origins of Trichloronitromethane and Dichloroacetonitrile during Chlorination/Chloramination. Chemosphere 2012, 88, 25–32. DOI: 10.1016/j.chemosphere.2012.02.035.
  • Lee, S.; Ahn, K. H. Monitoring of COD as an Organic Indicator in Waste Water and Treated Effluent by Fluorescence Excitation–Emission (FEEM) Matrix Characterization. Water Sci. Technol. 2004, 50, 57–63. DOI: 10.2166/wst.2004.0488.
  • AWWA. Characterization of Natural Organic Matter and its Relationship to Treatability, 1st ed.; AWWARF and AWWA: USA, 1993.
  • Bond, T.; Huang, J.; Templeton, M. R.; Graham, N. Occurrence and Control of Nitrogenous Disinfection By-products in Drinking Water: A Review. Water Res. 2011, 45, 4341–4354. DOI: 10.1016/j.watres.2011.05.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.