Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 54, 2019 - Issue 12
434
Views
10
CrossRef citations to date
0
Altmetric
Articles

Mobility and bioaccessibility of risk elements in the area affected by the long-term opencast coal mining

, , , , , & show all
Pages 1159-1169 | Received 04 Mar 2019, Accepted 14 Jun 2019, Published online: 26 Jun 2019

References

  • Qin, F. X.; Wei, C. F.; Zhong, S. Q.; Huang, X. F.; Pang, W. P.; Jiang, X. Soil Heavy Metal(Loid)s and Risk Assessment in Vicinity of a Coal Mining Area from Southwest Guizhou, China. J. Cent. South Univ. 2016, 23, 2205–2213. DOI:10.1007/s11771-016-3278-7.
  • Raj, D.; Chowdhury, A.; Maiti, S. K. Ecological Risk Assessment of Mercury and Other Heavy Metals in Soils of Coal Mining Area: A Case Study from the Eastern Part of a Jharia Coal Field, India. Human Ecol. Risk Assess. 2017, 23, 767–787. DOI:10.1080/10807039.2016.1278519.
  • Dabiri, R.; Adli, F.; Javanbakht, M. The Environmental Impacts of Aghdarband Coal Mine: pollution by Heavy Metals. Geopersia 2017, 7, 313–323.
  • Chen, Y. X.; Jiang, X. S.; Wang, Y.; Zhuang, D. F. Spatial Characteristics of Heavy Metal Pollution and the Potential Ecological Risk of a Typical Mining Area: A Case Study in China. Proc. Safe. Environ. Prot. 2018, 113, 204–219. DOI:10.1016/j.psep.2017.10.008.
  • Gonzalez-Fernandez, B.; Rodriguez-Valdes, E.; Boente, C.; Menendez-Casares, E.; Fernandez-Brana, A.; Gallego, J. R. Long-Term Ongoing Impact of Arsenic Contamination on the Environmental Compartments of a Former Mining-Metallurgy Area. Sci. Total Environ. 2018, 610, 820–830. DOI:10.1016/j.scitotenv.2017.08.135.
  • Li, F.; Cai, Y.; Zhang, J. D. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China. Sustainability 2018, 10, 1–6, Article No 91. DOI:10.3390/su10010091.
  • Liao, X. J.; Zhang, C.; Sun, G. Y.; Li, Z. G.; Shang, L. H.; Fu, Y. R.; He, Y. S.; Yang, Y. Assessment of Metalloid and Metal Contamination in Soils from Hainan, China. Ijerph. 2018, 15, 1–13, Article No: 454. DOI:10.3390/ijerph15030454.
  • Zhou, Y. T.; Niu, L. L.; Liu, K.; Yin, S. S.; Liu, W. P. Arsenic in Agricultural Soils across China: Distribution Pattern, Accumulation Trend, Influencing Factors, and Risk Assessment. Sci. Total Environ. 2018, 616, 156–163. DOI:10.1016/j.scitotenv.2017.10.232.
  • Pertold, Z. Arsenic in the Environment: Natural and Other Sources of Arsenic and Methods of Its Elimination. (in Czech) Vesmír 1998, 77, 323–325.
  • Yudovich, Y. E.; Ketris, M. P. Arsenic in Coal: A Review. Int. J. Coal Geol. 2005, 61, 141–196. DOI:10.1016/j.coal.2004.09.003.
  • US EPA (US Environmental Protection Agency). Bioavailability. 2007; Available from http://www.epa.gov/region08/r8risk/hh_rba.html
  • Kumpiene, J.; Giagnoni, L.; Marschner, B.; Denys, S.; Mench, M.; Adriaensen, K.; Vangronsveld, J.; Puschenreiter, M.; Renella, G. Assessment of Methods for Determining Bioavailability of Trace Elements in Soils: A Review. Pedosphere 2017, 27, 389–406. DOI:10.1016/S1002-0160(17)60337-0.
  • Ruby, M. V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C. M. Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environ. Sci. Technol. 1996, 30, 422–430. DOI:10.1021/es950057z.
  • Juhasz, A. L.; Weber, J.; Naidu, R.; Gancarz, D.; Rofe, A.; Todor, D.; Smith, E. Determination of Cadmium Relative Bioavailability in Contaminated Soils and Its Prediction Using in Vitro Methodologies. Environ. Sci. Technol. 2010, 44, 5240–5247. DOI:10.1021/es1006516.
  • Čadková, Z.; Száková, J.; Miholová, D.; Horáková, B.; Kopecký, O.; Křivská, D.; Langrová, I.; Tlustoš, P. Bioaccessibility versus Bioavailability of Essential (Cu, Fe, Mn, and Zn) and Toxic (Pb) Elements from Phyto Hyperaccumulator Pistia Stratiotes: Potential Risk of Dietary Intake. J. Agric. Food Chem. 2015, 63, 2344–2354. DOI:10.1021/jf5058099.
  • Censi, P.; Zuddas, P.; Randazzo, L. A.; Tamburo, E.; Speziale, S.; Cuttitta, A.; Punturo, R.; Aricò, P.; Santagata, R. Source and Nature of Inhaled Atmospheric Dust from Trace Element Analyses of Human Bronchial Fluids. Environ. Sci. Technol. 2011, 45, 6262–6267. DOI:10.1021/es200539p.
  • Voutsa, D.; Samara, C. Labile and Bioaccessible Fractions of Heavy Metals in the Airborne Particulate Matter from Urban and Industrial Areas. Atm. Environ. 2002, 36, 3583–3590. DOI:10.1016/S1352-2310(02)00282-0.
  • Berlinger, B.; Ellingsen, D. G.; Náray, M.; Záray, G.; Thomassen, Y. A Study of the Bio-Accessibility of Welding Fumes. J. Environ. Monit. 2008, 10, 1448–1453. DOI:10.1039/b806631k.
  • Moss, O. R. Simulants of Lung Interstitial Fluid. Health Phys. 1979, 36, 447–448.
  • Hatch, E. G. Comparative Biochemistry of Airway Lining Fluid. In Comparative Biology of the Normal Lung, 1st ed.; Parent R.A., Ed.; Boca Raton, MA: CRC, 1992; 617.
  • Niu, J.; Rasmussen, P. E.; Hassan, N. M.; Vincent, R. Concentration Distribution and Bioaccessibility of Trace Elements in Nano and Fine Urban Airborne Particulate Matter: Influence of Particle Size. Water. Air. Soil Pollut. 2010, 213, 211–225. DOI:10.1007/s11270-010-0379-z.
  • Li, H. X.; Ji, H. B.; Shi, C. J.; Gao, Y.; Zhang, Y.; Xu, X. Y.; Ding, H. J.; Tang, L.; Xing, Y. X. Distribution of Heavy Metals and Metalloids in Bulk and Particle Size Fractions of Soils from Coal-Mine Brownfield and Implications on Human Health. Chemosphere 2017, 172, 505–515. DOI:10.1016/j.chemosphere.2017.01.021.
  • Hosseiwwnpur, A. R.; Motaghian, H. Evaluating of Many Chemical Extractants for Assessment of Zn and Pb Uptake by Bean in Polluted Soils. J. Soil Sci. Plant Nutr. 2015, 15, 24–34.
  • Menzies, N. W.; Donn, M. J.; Kopittke, P. M. Evaluation of Extractants for Estimation of the Phytoavailable Trace Metals in Soils. Environ. Pollut. 2007, 145, 121–130. DOI:10.1016/j.envpol.2006.03.021.
  • Moral, R.; Gilkes, R. J.; Moreno-Caselles, J. A Comparison of Extractants for Heavy Metals in Contaminated Soils from Spain. Commun. Soil Sci. Plant Anal. 2002, 33, 2781–2791. DOI:10.1081/CSS-120014480.
  • Chumanova-Vavrova, E.; Cudlin, O.; Cudlin, P. Spatial and Temporal Patterns of Ground Vegetation Dominants in Mountain Spruce Forests Damaged by Sulphur Air Pollution (Giant Mountains, Czech Republic). Boreal Environ. Res. 2015, 20, 620–636.
  • Baker, A. J. M. Metal Tolerance. New Phytol. 1987, 160, 93–111. DOI:10.1111/j.1469-8137.1987.tb04685.x.
  • Quevauviller, P.; Ure, A.; Muntau, H.; Griepink, B. Improvement of Analytical Measurements within the BCR – Program – Single and Sequential Extraction Procedures Applied to Soil and Sediment Analysis. Intern. J. Environ. Anal. Chem. 1993, 51, 129–134. DOI:10.1080/03067319308027618.
  • Karadaş, C.; Kara, D. In Vitro Gastro-Intestinal Method for the Assessment of Heavy Metal Bioavailability in Contaminated Soils. Environ. Sci. Pollut. Res. 2011, 18, 620–628. DOI:10.1007/s11356-010-0404-1.
  • Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of Heavy Metal Pollution, Spatial Distribution and Origin in Agricultural Soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. DOI:10.1016/j.envres.2017.01.021.
  • Hu, B. F.; Jia, X. L.; Hu, J.; Xu, D. Y.; Xia, F.; Li, Y. Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2017, 14, 1–18, Article No. 1042. DOI:10.3390/ijerph14091042.
  • Lortzie, K.; Stylianou, M.; Dermatas, D.; Kostarelos, K. Long-Term Environmental Impact at an Abandoned Gold–Silver Enrichment Plant: A Case Study in Mitsero, Cyprus. Eng. Geol. 2015, 184, 119–125. DOI:10.1016/j.enggeo.2014.11.011.
  • Kříbek, B.; Strnad, M.; Boháček, Z.; Sýkorová, I.; Čejka, J.; Sobalík, Z. Geochemistry of Miocene Lacustrine Sediments from the Sokolov Coal Basin (Czech Republic). Int. J. Coal Geol. 1998, 37, 207–233. DOI:10.1016/S0166-5162(98)00002-0.
  • Bolan, N.; Mahimairaja, S.; Kunhikrishnan, A.; Naidu, A. Sorption–Bioavailability Nexus of Arsenic and Cadmium in Variable-Charge Soils. J. Hazard. Mat. 2013, 261, 725–732. DOI:10.1016/j.jhazmat.2012.09.074.
  • Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants. 3rd ed., Boca Raton, MA: CRC Press, 2001; pp. 432.
  • Public notice No. 153/2016 about the conditions for the protection of the agricultural soil quality. Legal code of The Czech Republic, 2016; 2692–2699.
  • Bhuiyan, H. A. M.; Parvez, L.; Islam, A. M.; Dampare, B. S.; Suzuki, S. Heavy Metal Pollution of Coal Mine-Affected Agricultural Soils in the Northern Part of Bangladesh. J. Hazard. Mat. 2010, 173, 384–392. DOI:10.1016/j.jhazmat.2009.08.085.
  • Fröhlichová, A.; Száková, J.; Najmanová, J.; Tlustoš, P. An Assessment of the Risk of Element Contamination of Urban and Industrial Areas Using Taraxacum Sect. Ruderalia as a Bioindicator. Environ. Monit. Assess. 2018, 190, 150.
  • Ma, X. J.; Lu, Z. H.; Cheng, J. L. Ecological Risk Assessment of Open Coal Mine Area. Environ. Monit. Assess. 2008, 147, 471–481.
  • Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical Speciation and Human Health Risk of Trace Metals in Urban Street Dusts from a Metropolitan City, Nanjing, SE China. Sci. Total Environ. 2013, 456–457, 212–221. DOI:10.1016/j.scitotenv.2013.03.094.
  • Minkina, T. M.; Mandzhieva, S. S.; Chaplygin, V. A.; Nazarenko, O. G.; Maksimov, A. Y.; Zamulina, I. V.; Burachevskaya, M. V.; Sushkova, S. N. Accumulation of Heavy Metals by Forb Steppe Vegetation according to Long-Term Monitoring Data. Arid Ecosyst. 2018, 8, 190–202. DOI:10.1134/S2079096118030058.
  • Quezada-Hinojosa, R.; Follmi, K. B.; Gillet, F.; Matera, V. Cadmium Accumulation in Six Common Plant Species Associated with Soils Containing High Geogenic Cadmium Concentrations at Le Gurnigel, Swiss Jura Mountains. Catena 2015, 124, 85–96. DOI:10.1016/j.catena.2014.09.007.
  • Directive No. 2002/32/ES of European Parliament and Council of Europe concerning xenobiotics in feedstuffs. 2002.
  • Zgorelec, Z.; Basic, F.; Kisic, I.; Wenzel, W. W.; Custovic, H. Arsenic and Nickel Enrichment Coefficients for Crops Growing on Coal Ash. Cereal Res. Commun. 2008, 36, 1219–1222.
  • Madejón, P.; Lepp, N. W. Arsenic in Soils and Plants of Woodland Regenerated on an Arsenic-Contaminated Substrate: A Sustainable Natural Remediation? Sci. Total Environ. 2007, 379, 256–262. DOI:10.1016/j.scitotenv.2006.08.051.
  • Králová, L.; Száková, J.; Kubík, Š.; Tlustoš, P.; Balík, J. The Variability of Arsenic and Other Risk Element Uptake by Individual Plant Species Growing on Contaminated Soil. Soil Sedim. Contam. 2010, 19, 617–634. DOI:10.1080/15320383.2010.499926.
  • Alloway, B. J. Heavy Metals in Soils. Glasgow and London: Blackie and Son Ltd. 1990.
  • Száková, J.; Krýchová, M.; Tlustoš, P. The Risk Element Contamination Level in Soil and Vegetation at Former Deposit of Galvanic Sludges. J. Soils Sedim. 2016, 16, 924–938.
  • Boschi, V.; Willenbring, K. J. Beryllium Desorption from Minerals and Organic Ligands over Time. Chem. Geol. 2016, 439, 52–58. DOI:10.1016/j.chemgeo.2016.06.009.
  • Li, L.; Wu, H.; Van Gestel, A. M. C.; Peijnenburg, J. G. M. W.; Allen, E. H. Soil Acidification Increases Metal Extractability and Bioavailability in Old Orchard Soils of Northeast Jiaodong Peninsula in China. Environ. Pollut. 2014, 188, 144–152. DOI:10.1016/j.envpol.2014.02.003.
  • Kašparovská, K.; Száková, J.; Sysalová, J.; Tlustoš, P.; Svoboda, P. In-Vitro Bioavailability of Hazardous Elements from Inhaled Urban Particulate Matter (in Czech). Chem. Listy 2013, 107, 313–317.
  • Guney, M.; Bourges, C. M. J.; Chapuis, R. P.; Zagury, G. J. Lung Bioaccessibility of as, Cu, Fe, Mn, Ni, Pb, and Zn in Fine Fraction (20 μm) from contaminated soils and mine tailings. Sci. Total Environ. 2017, 579, 378–386. DOI:10.1016/j.scitotenv.2016.11.086.
  • Eskenazy, G. M. Geochemistry of Beryllium in Bulgarian Coals. Int. J. Coal Geol. 2006, 66, 305–315. DOI:10.1016/j.coal.2005.07.005.
  • Yager, J. W.; Greene, T.; Schoof, R. A. Arsenic Relative Bioavailability from Diet and Airborne Exposures: Implications for Risk Assessment. Sci. Total Environ. 2015, 536, 368–381. DOI:10.1016/j.scitotenv.2015.05.141.
  • Huang, M.; Chen, X.; Zhao, Y.; Chan, C. Y.; Wang, W.; Wang, X.; Wong, M. H. Arsenic Speciation in Total Contents and Bioaccessible Fractions in Atmospheric Particles Related to Human Intakes. Environ. Pollut. 2014, 188, 37–44. DOI:10.1016/j.envpol.2014.01.001.
  • Buchet, J. P.; Lauwerys, R. R.; Yager, J. W. Lung Retention and Bioavailability of Arsenic after Single Intratracheal Administration of Sodium Arsenite, Sodium Arsenate, Fly Ash and Copper Smelter Dust in the Hamster. Environ. Geochem. Health 1995, 17, 182–188. DOI:10.1007/BF00661330.
  • Yager, J. W.; Hicks, J. B.; Fabiánová, E. Airborne Arsenic and Urinary Excretion of Arsenic Metabolites during Boiler Cleaning Operations in a Slovak Coal-Fired Power Plant. Environ. Health Perspect. 1997, 105, 836–842. DOI:10.2307/3433701.
  • Rivera, N.; Hesterberg, D.; Kaur, N.; Duckworth, O. W. Chemical Speciation of Potentially Toxic Trace Metals in Coal Fly Ash Associated with the Kingston Fly Ash Spill. Energy Fuels 2017, 31, 9652–9659. DOI:10.1021/acs.energyfuels.7b00020.
  • Veselská, V.; Majzlan, J.; Hiller, E.; Peťková, K.; Jurkovič, Ľ.; Ďurža, O.; Voleková-Lalinská, B. Geochemical Characterization of Arsenic-Rich Coal-Combustion Ashes Buried under Agricultural Soils and the Release of Arsenic. Appl. Geochem. 2013, 33, 153–164. DOI:10.1016/j.apgeochem.2013.02.008.
  • Opiso, E.; Sato, T.; Yoneda, T. Sorption Behaviour of Arsenate by Non-Crystalline Aluminosilicate Minerals: implications for Arsenic Immobilisation during the Disposal of Alkaline Coal Fly Ash Materials. Int. J. Oil Gas Coal Technol. 2016, 12, 197–209. DOI:10.1504/IJOGCT.2016.076539.
  • Slejkovec, Z.; Kanduc, T. A. Unexpected Arsenic Compounds in Low-Rank Coals. Environ. Sci. Technol. 2005, 39, 3450–3454.
  • Liu, G. L.; Cai, Y.; Hernandez, D.; Schrlau, J.; Allen, M. Mobility and Speciation of Arsenic in the Coal Fly Ashes Collected from the Savannah River Site (SRS). Chemosphere 2016, 151, 138–144. DOI:10.1016/j.chemosphere.2016.02.071.
  • Flues, M.; Sato, I. M.; Scapin, M. A.; Cotrim, M. E. B.; Camargo, I. M. C. Toxic Elements Mobility in Coal and Ashes of Figueira Coal Power Plant, Brazil. Fuel 2013, 103, 430–436. DOI:10.1016/j.fuel.2012.09.045.
  • Bencko, V.; Novák, J.; Suk, M. Health and Natural Conditions (in Czech). Prague: DOLIN Ltd., 2011.
  • Fireman, E.; Lerman, Y.; Stark, M.; Pardo, A.; Schwarz, Y.; Van Dyke, M. V.; Elliot, J.; Barkes, B.; Newman, L.; Maier, L. A Novel Alternative to Environmental Monitoring to Detect Workers at Risk for Beryllium Exposure-Related Health Effects. J. Occup. Environ. Hyg. 2014, 11, 809–818. DOI:10.1080/15459624.2014.922689.
  • Rousset, D.; Durand, T. Beryllium Solubility in Occupational Airborne Particles: Sequential Extraction Procedure and Workplace Application. J. Occup. Environ. Hyg. 2016, 13, 71–83. DOI:10.1080/15459624.2015.1078467.
  • Shay, E.; De Gandiaga, E.; Madl, A. K. Considerations for the Development of Health-Based Surface Dust Cleanup Criteria for Beryllium. Crit. Rev. Toxicol. 2013, 43, 220–243. DOI:10.3109/10408444.2013.767308.
  • Huang, H.; Jiang, Y.; Xu, X. Y.; Cao, X. D. In Vitro Bioaccessibility and Health Risk Assessment of Heavy Metals in Atmospheric Particulate Matters from Three Different Functional Areas of Shanghai, China. Sci. Total Environ. 2018, 610, 546–554. DOI:10.1016/j.scitotenv.2017.08.074.
  • Luo, X.; Yu, S.; Li, X. The Mobility, Bioavailability, and Human Bioaccessibility of Trace Metals in Urban Soils of Hong Kong. Appl. Geochem. 2012, 27, 995–1004. DOI:10.1016/j.apgeochem.2011.07.001.
  • Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and Health Risk of Arsenic, Mercury and Other Metals in Urban Street Dusts from a Mega-City, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. DOI:10.1016/j.envpol.2011.01.037.
  • Tremlová, J.; Száková, J.; Tlustoš, P. An Assessment of Possible Effect of Risk Elements Contained in Soil on Human Organism (in Czech). Chem. Listy 2010, 104, 349–352.
  • Waterlot, C.; Douay, F.; Pelfrêne, A. Chemical Availability of Cd, Pb and Zn in Anthropogenically Polluted Soil: Assessing the Geochemical Reactivity and Oral Bioaccessibility. Pedosphere 2017, 27, 616–629. DOI:10.1016/S1002-0160(17)60356-4.
  • Basta, N.; Gradwohl, R. Estimation of Cd, Pb, and Zn Bioavailability in Smelter-Contaminated Soils by a Sequential Extraction Procedure. J. Soil Contam. 2000, 9, 149–164.
  • Lokeshappa, B.; Dikshit, A. K.; Luo, Y.; Hutchinson, T. J.; Giammar, D. E. Assessing Bioaccessible Fractions of Arsenic, Chromium, Lead, Selenium and Zinc in Coal Fly Ashes. Int. J. Environ. Sci. Technol. 2014, 11, 1601–1610. DOI:10.1007/s13762-013-0316-y.
  • Jin, Y.; Yuan, C.; Jiang, W.; Qi, L. Evaluation of Bioaccessible Arsenic in Fly Ash by an in Vitro Method and Influence of Particle-Size Fraction on Arsenic Distribution. J. Mater. Cycles Waste Manag. 2013, 15, 516–521. DOI:10.1007/s10163-013-0176-z.
  • Ollson, C. J.; Smith, E.; Juhasz, A. L. Can In Vitro Assays account for Interactions between Inorganic co-Contaminants Observed during In Vivo Relative Bioavailability Assessment? Environ. Pollut. 2018, 233, 348–355. DOI:10.1016/j.envpol.2017.10.089.
  • Madrid, F.; Biasioli, M.; Ajmone-Marsan, F. Availability and Bioaccessibility of Metals in Fine Particles of Some Urban Soils. Arch. Environ. Contam. Toxicol. 2008, 55, 21–32. DOI:10.1007/s00244-007-9086-1.
  • Zhong, L. J.; Yu, Y. L.; Lian, H. Z.; Hu, X.; Fu, H. M.; Chen, Y. J. Solubility of Nano-Sized Metal Oxides Evaluated by Using in Vitro Simulated Lung and Gastrointestinal Fluids: implication for Health Risks. J. Nanoparticle Res. 2017, 19, 1–10, Article No 375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.