Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 1
482
Views
4
CrossRef citations to date
0
Altmetric
Articles

Determining conventional and unconventional oil and gas well brines in natural sample II: Cation analyses with ICP-MS and ICP-OES

ORCID Icon, , , , , ORCID Icon & show all
Pages 11-23 | Received 24 Jun 2019, Accepted 29 Aug 2019, Published online: 24 Sep 2019

References

  • US EPA. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States; Office of Research and Development: Washington, DC, 2016, p. 50.
  • Shrestha, N.; Chilkoor, G.; Wilder, J.; Gadhamshetty, V.; Stone, J. J. Potential Water Resource Impacts of Hydraulic Fracturing from Unconventional Oil Production in the Bakken Shale. Water Res. 2017, 108, 1–24. DOI: 10.1016/j.watres.2016.11.006.
  • Lampe, D.; Stolz, J. F. Environmental Impacts of Unconventional Shale Gas Extraction in the Appalachian Basin. Environ. Sci. Health Part A. 2015, 50, 434–446. DOI: 10.1080/10934529.2015.992653.
  • Rozell, D. J.; Reaven, S. J. Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale. Risk Anal. 2012, 32, 1382. DOI: 10.1111/j.1539-6924.2011.01757.x.
  • Osborn, S. G.; Vengosh, A.; Warner, N. R.; Jackson, R. B. Methane Contamination of Drinking Water Accompanying Gas-Well Drilling and Hydraulic Fracturing. Proc. Nat. Acad. Sci. 2011, 108, 8172–8176. DOI: 10.1073/pnas.1100682108.
  • Skalak, K. J.; Engle, M. A.; Rowan, E. L.; Jolly, G. D.; Conko, K. M.; Benthem, A. J.; Kraemer, T. F. Surface Disposal of Produced Waters in Western and Southwestern Pennsylvania: Potential for Accumulation of Alkali-Earth Elements in Sediments. Int. J. Coal Geol. 2014, 126, 162–170. DOI: 10.1016/j.coal.2013.12.001.
  • Warner, N. R.; Christie, C. A.; Jackson, R. B.; Vengosh, A. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania. Environ. Sci. Technol. 2013, 47, 11849–11857. DOI: 10.1021/es402165b.
  • Blauch, M. E.; Myers, R. R.; Moore, T. R.; Lipinski, B. A.; Houston, N. A. Marcellus Shale Post-Frac Flowback Waters- Where is All the Salt Coming From and What are the Implications? In Society of Petroleum Engineers, Eastern Regional Meeting, Charleston, WV, Sept. 23–25 2009.
  • Shih, J.-S.; Saiers, J. E.; Anisfeld, S. C.; Chu, Z.; Muehlenbachs, L. A.; Olmstead, S. M. Characterization and Analysis of Liquid Waste from Marcellus Shale Gas Development. Environ. Sci. Technol. 2015, 49, 9557–9565. DOI: 10.1021/acs.est.5b01780.
  • Ziemkiewicz, P. F.; He, Y. T. Evolution of Water Chemistry during Marcellus Shale Gas Development: A Case Study in West Virginia. Chemosphere 2015, 134, 224–231. DOI: 10.1016/j.chemosphere.2015.04.040.
  • Abualfaraj, N.; Gurian, P. L.; Olson, M. S. Characterization of Marcellus Shale Flowback Water. Environ. Eng. Sci. 2014, 31, 514–524. DOI: 10.1089/ees.2014.0001.
  • Kim, S.; Omur-Ozbek, P.; Dhanasekar, A.; Prior, A.; Carlson, K. Temporal Analysis of Flowback and Produced Water Composition from Shale Oil and Gas Operations: Impact of Frac Fluid Characteristics. J. Petrol. Sci. Eng. 2016, 147, 202–210. DOI: 10.1016/j.petrol.2016.06.019.
  • Chapman, E. C.; Capo, R. C.; Stewart, B. W.; Kirby, C. S.; Hammack, R. W.; Schroeder, K. T.; Edenborn, H. M. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction. Environ. Sci. Technol. 2012, 46, 3545–3553. DOI: 10.1021/es204005g.
  • Rosenblum, J.; Nelson, A. W.; Ruyle, B.; Schultz, M. K.; Ryan, J. N.; Linden, K. G. Temporal Characterization of Flowback and Produced Water Quality from a Hydraulically Fractured Oil and Gas Well. Sci. Total Environ. 2017, 596–597, 369–377. DOI: 10.1016/j.scitotenv.2017.03.294.
  • Martin, T. D.; Brockhoff, C. A.; Creed, J. T. and EMMC Methods Work Group. EPA Method 200.7. Determination of Metals and Trace Metals in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry. Revision 4.4 ed. 1994.
  • Sarojam, P. Analysis of Wastewater for Metals Using ICP-OES; Application note, PerkinElmer, Inc, Shelton CT, 2010. https://www.perkinelmer.com.cn/lab-solutions/resources/docs/APP_MetalsinWastewater.pdf (accessed Jun 2, 2019).
  • Hannan, J. US EPA Method 200.7 Using the Thermo Scientific iCAP 7600 ICP-OES Duo, 2013.
  • Pancras, J.; Norris, G.; Landis, M.; Kovalcik, K.; McGee, J. K.; Kamal, A. Application of ICP-OES for Evaluating Energy Extraction and Production Wastewater Discharge Impacts on Surface Waters in Western Pennsylvania. Sci. Total Environ. 2015, 529, 21–29. DOI: 10.1016/j.scitotenv.2015.04.011.
  • Creed, J. T.; Brockhoff, C. A.; Martin, T. D. EPA Method 200.8. Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. Revision 5.4 ed. 1994.
  • Garbarino, J. R.; Taylor, H. E. Inductively Coupled Plasma-Mass Spectrometric Method for the Determination of Dissolved Trace Elements in Natural Water. U.S. Geological Survey Open-File Report 94-358. Boulder, CO, 1996, 49.
  • Land, M.; Ingri, J.; Andersson, P. S.; Öhlander, B. Ba/Sr, Ca/Sr and 87Sr/86Sr Ratios in Soil Water and Groundwater: implications for Relative Contributions to Stream Water Discharge. Appl. Geochem. 2000, 15, 311–325. DOI: 10.1016/S0883-2927(99)00054-2.
  • Warner, N. R.; Jackson, R. B.; Darrah, T. H.; Osborn, S. G.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical Evidence for Possible Natural Migration of Marcellus Formation Brine to Shallow Aquifers in Pennsylvania. Proc. Natl. Acad. Sci. USA. 2012, 109, 11961–11966. DOI: 10.1073/pnas.1121181109.
  • Dresel, P. E.; Rose, A. W. Chemistry and Origin of Oil and Gas Well Brines in Western Pennsylvania. Pennsylvania Geol. Survey, 4th ser. Open File Report OFOG 10-01.0, 2010, 48.
  • Alawattegama, S. K.; Kondratyuk, T.; Krynock, R.; Bricker, M.; Rutter, J. K.; Bain, D. J.; Stolz, J. F. Well Water Contamination in a Rural Community in Southwestern Pennsylvania near Unconventional Shale Gas Extraction. J. Environ. Sci. Health, Part A. 2015, 50, 516–528. DOI: 10.1080/10934529.2015.992684.
  • Mayes, S. D. Well Water Quality in Southern Butler County, Pennsylvania; Duquesne University: Pittsburgh, PA, 2015.
  • Umstead, T. Surface and Ground Water Quality within the Cross Creek Watershed, May 2015–2016; Duquesne University: Pittsburgh, PA, 2016.
  • Nolan, C. A Decade (2005–2015) of Unconventional Shale Gas Development in Washington County, Pennsylvania, and Its Environmental Impact; Duquesne University: Pittsburgh, PA, 2016.
  • Manley, L. E. Water Quality Analysis of Watersheds in Southwestern Pennsylvania; Duquesne University: Pittsburgh, PA, 2017.
  • Madia, M. Environmental Assessment of Road Brining and Injection Wells for Disposal of Oil and Gas Liquid Waste. Master’s thesis, Duquesne University, Bayer School of Natural and Environmental Sciences, Pittsburgh, PA, 2018.
  • Cantlay, T.; Eastham, J. L.; Rutter, J.; Bain, D. J.; Dickson, B. C.; Basu, P.; Stolz, J. F. Determining Conventional and Unconventional Oil and Gas Well Brines in Natural Samples: I Anion Analyses with Ion Chromatography. J. Environ. Sci. Health, Part A
  • Cravotta, C. A. Dissolved Metals and Associated Constituents in Abandoned Coal-Mine Discharges, Pennsylvania, USA. Part 1: constituent Quantities and Correlations. Appl. Geochem. 2008, 23, 166–202. DOI: 10.1016/j.apgeochem.2007.10.011.
  • Vidic, R. D.; Brantley, S. L.; Vandenbossche, J. M.; Yoxtheimer, D.; Abad, J. D. Gas Development Impact of Shale on Regional Water Quality. Sci. Total Environ. 2013, 340, 826–835. DOI: 10.1126/science.1235009.
  • Li, H. Produced Water Quality Characterization and Prediction for Wattenberg Field; Colorado State University: Fort Collins, 2013.
  • Land, M.; Ingri, J.; Andersson, P. S.; Ohlander, B. Tracing Subsurface Water Flowpaths by Means Ofdissolved Ba/Sr,. Ca/Sr and 87SF/86Sr Ratios. Mineral. Magazine 1998, 62A, 850–851. DOI: 10.1180/minmag.1998.62A.2.114.
  • Tisherman, R.; Bain, D. J. Alkali Earth Ratios Differentiate Conventional and Unconventional Hydrocarbon Brine Contamination. Sci. Total Environ. 2019, 695, 133944–133949. DOI: 10.1016/j.scitotenv.2019.133944.
  • Warner, N. R.; Darrah, T. H.; Jackson, R. B.; Millot, R.; Kloppmann, W.; Vengosh, A. New Tracers Identify Hydraulic Fracturing Fluids and Accidental Releases from Oil and Gas Operations. Environ. Sci. Technol. 2014, 48, 12552–12560. DOI: 10.1021/es5032135.
  • 40 CFR Appendix B to Part 136 - Definition and Procedure for the Determination of the Method Detection Limit-Revision 1.11. edition), Code of Federal Regulations (annual edition). V. AE 2.106/3:40/.
  • EPA, U., EPA Method 6010B: Inductively Coupled Plasma - Atomic Emission Spectrometry. 1996; pp 1–25.
  • Gaines, P. R. ICP Operations Guide: A Guide for Using ICP-OES and ICP-MS. Inorganic Ventures, Christiansburg VA, 2011, 44.
  • Wiel, H. J. Determination of Elements by ICP-AES and ICP-MS; National Institute of Public Health and the Environment (RIVM): Bilthoven, Netherlands, 2003, 37.
  • EPA, U. Standard Operation Procedure for Trace Element Analysis of Flue Gas Desulfurization Wastewaters Using ICP-MS Collision/Reaction Cell Procedure. Office of Water (4303T), Washington, DC 20460 2013, 32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.