Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 1
135
Views
4
CrossRef citations to date
0
Altmetric
Articles

Determining conventional and unconventional oil and gas well brines in natural samples III: mass ratio analyses using both anions and cations

ORCID Icon, & ORCID Icon
Pages 24-32 | Received 24 Jun 2019, Accepted 29 Aug 2019, Published online: 22 Oct 2019

References

  • Rozell, D. J.; Reaven, S. J. Water Pollution Risk Associated with Natural Gas Extraction from the Marcellus Shale. Risk Anal. 2012, 32, 1382. DOI: 10.1111/j.1539-6924.2011.01757.x.
  • Osborn, S. G.; Vengosh, A.; Warner, N. R.; Jackson, R. B. Methane Contamination of Drinking Water Accompanying Gas-Well Drilling and Hydraulic Fracturing. Proc. Nat. Acad. Sci. 2011, 108, 8172–8176. DOI: 10.1073/pnas.1100682108.
  • Skalak, K. J.; Engle, M. A.; Rowan, E. L.; Jolly, G. D.; Conko, K. M.; Benthem, A. J.; Kraemer, T. F. Surface Disposal of Produced Waters in Western and Southwestern Pennsylvania: Potential for Accumulation of Alkali-Earth Elements in Sediments. Int. J. Coal Geol. 2014, 126, 162–170. DOI: 10.1016/j.coal.2013.12.001.
  • US EPA. Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States; Office of Research and Development: Washington, DC, 2016, 50.
  • Shrestha, N.; Chilkoor, G.; Wilder, J.; Gadhamshetty, V.; Stone, J. J. Potential Water Resource Impacts of Hydraulic Fracturing from Unconventional Oil Production in the Bakken Shale. Water Res. 2017, 108, 1–24. DOI: 10.1016/j.watres.2016.11.006.
  • Blauch, M. E.; Myers, R. R.; Moore, T. R.; Lipinski, B. A.; Houston, N. A. Marcellus Shale Post-Frac Flowback Waters- Where is All the Salt Coming from and What are the Implications? In Society of Petroleum Engineers, Eastern Regional Meeting, Charleston, WV, Sep. 23–25, 2009.
  • Shih, J.-S.; Saiers, J. E.; Anisfeld, S. C.; Chu, Z.; Muehlenbachs, L. A.; Olmstead, S. M. Characterization and Analysis of Liquid Waste from Marcellus Shale Gas Development. Environ. Sci. Technol. 2015, 49, 9557–9565. DOI: 10.1021/acs.est.5b01780.
  • Ziemkiewicz, P. F.; He, Y. T. Evolution of Water Chemistry during Marcellus Shale Gas Development: A Case Study in West Virginia. Chemosphere 2015, 134, 224–231. DOI: 10.1016/j.chemosphere.2015.04.040.
  • Abualfaraj, N.; Gurian, P. L.; Olson, M. S. Characterization of Marcellus Shale Flowback Water. Environ. Eng. Sci. 2014, 31, 514–524. DOI: 10.1089/ees.2014.0001.
  • Kim, S.; Omur-Ozbek, P.; Dhanasekar, A.; Prior, A.; Carlson, K. Temporal Analysis of Flowback and Produced Water Composition from Shale Oil and Gas Operations: Impact of Frac Fluid Characteristics. J. Petrol. Sci. Eng. 2016, 147, 202–210. DOI: 10.1016/j.petrol.2016.06.019.
  • Chapman, E. C.; Capo, R. C.; Stewart, B. W.; Kirby, C. S.; Hammack, R. W.; Schroeder, K. T.; Edenborn, H. M. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction. Environ. Sci. Technol. 2012, 46, 3545–3553. DOI: 10.1021/es204005g.
  • Rosenblum, J.; Nelson, A. V.; Ruyle, B.; Schultz, M. K.; Ryan, J. N.; Linden, K. G. Temporal Characterization of Flowback and Produced Water Quality from a Hydraulically Fractured Oil and Gas Well. Sci. Total Environ. 2017, 596-597, 369–377. DOI: 10.1016/j.scitotenv.2017.03.294.
  • Vengosh, A.; Jackson, R. B.; Warner, N.; Darrah, T. H.; Kondash, A. A Critical Review of the Risks to Water Resources from Unconventional Shale Gas Development and Hydraulic Fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. DOI: 10.1021/es405118y.
  • Lester, Y.; Ferrer, I.; Thurman, E. M.; Sitterley, K. A.; Korak, J. A.; Aiken, G.; Linden, K. G. Characterization of Hydraulic Fracturing Flowback Water in Colorado: Implications for Water Treatment. Sci. Total Environ. 2015, 512–513, 637–644. DOI: 10.1016/j.scitotenv.2015.01.043.
  • Warner, N. R.; Christie, C. A.; Jackson, R. B.; Vengosh, A. Impacts of Shale Gas Wastewater Disposal on Water Quality in Western Pennsylvania. Environ. Sci. Technol. 2013, 47, 11849–11857. DOI: 10.1021/es402165b.
  • Vengosh, A.; Warner, N.; Jackson, R.; Darrah, T. The Effect of Shale Gas Exploration and Hydraulic Fracturing on the Quality of Water Resources in the United States. Proced. Earth Planetary Sci. 2013, 7, 863–866. DOI: 10.1016/j.proeps.2013.03.213.
  • Burgos, W. D.; Castillo-Meza, L.; Tasker, T. L.; Geeza, T. J.; Drohan, P. J.; Liu, X.; Landis, J. D.; Blotevogel, J.; McLaughlin, M.; Borch, T.; Warner, N. R. Watershed-Scale Impacts from Surface Water Disposal of Oil and Gas Wastewater in Western Pennsylvania. Environ. Sci. Technol. 2017, 51, 8851–8860. DOI: 10.1021/acs.est.7b01696.
  • Tasker, T. L.; Piotrowski, P. K.; Dorman, F. L.; Burgos, W. D. Metal Associations in Marcellus Shale and Fate of Synthetic Hydraulic Fracturing Fluids Reacted at High Pressure and Temperature. Environ. Eng. Sci. 2016, 33, 753–765. DOI: 10.1089/ees.2015.0605.
  • Wen, T.; Niu, X.; Gonzales, M.; Zheng, G.; Li, Z.; Brantley, S. L. Big Groundwater Data Sets Reveal Possible Rare Contamination amid Otherwise Improved Water Quality for Some Analytes in a Region of Marcellus Shale Development. Environ. Sci. Technol. 2018, 52, 7149–7159. DOI: 10.1021/acs.est.8b01123.
  • Ferrer, I.; Thurman, E. M. Chemical Constituents and Analytical Approaches for Hydraulic Fracturing Waters. Trends Environ. Anal. Chem. 2015, 5, 18–25. DOI: 10.1016/j.teac.2015.01.003.
  • Rowan, E. L.; Engle, M. A.; Kraemer, T. F.; Schroeder, K. T.; Hammack, R. W.; Doughten, M. W. Geochemical and Isotopic Evolution of Water Produced from Middle Devonian Marcellus Shale Gas Wells, Appalachian Basin, Pennsylvania. AAPG Bull. 2015, 99, 181–206.
  • Brantley, S. L.; Yoxtheimer, D.; Arjmand, S.; Grieve, P.; Vidic, R.; Pollak, J.; Llewellyn, G. T.; Abad, J.; Simon, C. Water Resource Impacts during Unconventional Shale Gas Development: The Pennsylvania Experience. Int. J. Coal Geol. 2014, 126, 140–156. DOI: 10.1016/j.coal.2013.12.017.
  • Dresel, P. E.; Rose, A. W. Chemistry and Origin of Oil and Gas Well Brines in Western Pennsylvania. Pennsylvania Geol. Survey 2010, Open-File Report OFOG 10-01.0, 48.
  • Lee, R. S.; Adamson, D. T.; Vanderford, M. In Visual Methods for Geochemical Screening of Possible Impacts to Groundwater by Oilfield Brines, 14th International Petroleum environmental Conference, Houston, TX, November 2007; Houston, TX, 2007.
  • Haluszczak, L. O.; Rose, A. W.; Kump, L. R. Geochemical Evaluation of Flowback Brine from Marcellus Gas Wells in Pennsylvania, USA. Appl. Geochem. 2013, 28, 55–61. DOI: 10.1016/j.apgeochem.2012.10.002.
  • Wilson, J. M.; Wang, Y.; VanBriesen, J. M. Sources of High Total Dissolved Solids to Drinking Water Supply in Southwestern Pennsylvania. J. Environ. Eng. 2014, 140, B4014003. DOI: 10.1061/(ASCE)EE.1943-7870.0000733.
  • Cantlay, T.; Eastham, J. L.; Rutter, J.; Bain, D. J.; Dickson, B. C.; Basu, P.; Stolz, J. F. Determining Conventional and Unconventional Oil and Gas Well Brines in Natural Samples: I Anion Analyses with Ion Chromatography. J. Environ. Sci. Health, Part A
  • Cantlay, T.; Bain, D. J.; Curet, J.; Jack, R. F.; Stolz, J. F. Determining Conventional and Unconventional Oil and Gas Well Brines in Natural Samples: II Cation Analyses with ICP-MS and ICP-OES. J. Environ. Sci. Health, Part A
  • Hayes, T. Sampling and Analysis of Water Streams Associated with the Development of Marcellus Shale Gas. Final report prepared the for Marcellus Shale Coalition, 2009.
  • Pennsylvania Department of Environmental Protection, Bureau of Oil and Gas Management. NORM Survey Summary 1991. http://files.dep.state.pa.us/OilGas/BOGM/BOGMPortalFiles/RadiationProtection/NORM.pdf, last accessed October 14, 2019.
  • Warner, N. R.; Jackson, R. B.; Darrah, T. H.; Osborn, S. G.; Down, A.; Zhao, K.; White, A.; Vengosh, A. Geochemical Evidence for Possible Natural Migration of Marcellus Formation Brine to Shallow Aquifers in Pennsylvania. Proc. Natl. Acad. Sci. USA. 2012, 109, 11961–11966. DOI: 10.1073/pnas.1121181109.
  • Cravotta, C. A. Dissolved Metals and Associated Constituents in Abandoned Coal-Mine Discharges, Pennsylvania, USA. Part 1: constituent Quantities and Correlations. Appl. Geochem. 2008, 23, 166–202. DOI: 10.1016/j.apgeochem.2007.10.011.
  • Acob, M.; Cozzarelli, I. M.; Dunlap, D. S.; Rowan, E. L.; Lorah, M. M. Organic and Inorganic Composition and Microbiology of Produced Waters from Pennsylvania Shale Gas Wells. Appl. Geochem. 2015, 60, 116–125. DOI: 10.1016/j.apgeochem.2015.04.011.
  • Poth, C. W. The Occurrence of Brine in Western Pennsylvania. Pennsylvania Geol. Survey. Bulletin M 1962, 47, 53. (Fourth Series),
  • USGS Produced Water Database. https://energy.usgs.gov/EnvironmentalAspects/EnvironmentalAspectsofEnergyProductionandUse/ProducedWaters.aspx#3822349-data.
  • Alawattegama, S. K.; Kondratyuk, T.; Krynock, R.; Bricker, M.; Rutter, J. K.; Bain, D. J.; Stolz, J. F. Well Water Contamination in a Rural Community in Southwestern Pennsylvania near Unconventional Shale Gas Extraction. J. Environ. Sci. Health, Part A 2015, 50, 516–528. DOI: 10.1080/10934529.2015.992684.
  • PA DEP Consent Decree Against Waste Treatment Corporation for Warren, PA Plant. Commonwealth Court of PA: 2013.
  • Cravotta, C. A. Relations among pH, sulfate, and metal concentrations in anthracite and bituminos coal-mine discharges, Pennsylvania. In 7th International Conference on Acid Rock Drainage (ICARD), American Society of Mining and Reclamation (ASMR): St. Louis, 2006; 378–404.
  • Prettner, S. A Study of Chloride Levels in Pine Creek, Allegheny County, PA. Duquesne University: Pittsburgh, PA, 2019.
  • USGS Water Data for the Nation. https://waterdata.usgs.gov/nwis. (accessed April 2019).
  • Richter, B. C.; Kreitler, C. W. Geochemical Techniques for Identifying Sources of Ground-Water Salinization; CRC Press: Boca Raton, 1993, 272.
  • Umstead, T. Surface and Ground Water Quality within the Cross Creek Watershed, May 2015–2016. Duquesne University: Pittsburgh PA, 2016.
  • Kuriata-Potasznik, A.; Szymczyk, S. Magnesium and Calcium Concentrations in the Surface Water and Bottom Deposits of a River-Lake System. J. Elem. 2015, 20, 677–692. DOI: 10.5601/jelem.2014.19.4.788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.