Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 2
461
Views
17
CrossRef citations to date
0
Altmetric
Articles

Prediction models for evaluating heavy metal uptake by Pisum sativum L. in soil amended with sewage sludge

ORCID Icon, , , , &
Pages 151-160 | Received 23 Jul 2019, Accepted 10 Sep 2019, Published online: 24 Sep 2019

References

  • Jamali, M. K.; Kazi, T. G.; Arain, M. B.; Afridi, H. I.; Jalbani, N.; Kandhro, G. A.; Shah, A. Q.; Baig, J. A. Heavy Metal Accumulation in Different Varieties of Wheat (Triticum aestivum L.) Grown in Soil Amended with Domestic Sewage Sludge. J. Hazard. Mater. 2009, 164, 1386–1391. DOI: 10.1016/j.jhazmat.2008.09.056.
  • Jamali, M. K.; Kazi, T. G.; Arain, M. B.; Afridi, H. I.; Jalbani, N.; Kandhro, G. A.; Shah, A. Q.; Baig, J. A. Speciation of Heavy Metals in Untreated Sewage Sludge by Using Microwave Assisted Sequential Extraction Procedure. J. Hazard. Mater. 2009, 163, 1157–1164. DOI: 10.1016/j.jhazmat.2008.07.071.
  • Jamali, M. K.; Kazi, T. G.; Arain, M. B.; Afridi, H. I.; Jalbani, N.; Memon, A. U. R.; Ansari, R.; Shah, A. The Feasibility of Using an Industrial Sewage Sludge Produce in Pakistan as Agricultural Fertilizer Used for Cultivation of Sorghum bicolor L. Arch. Agron. Soil Sci. 2007, 53, 659–671. DOI: 10.1080/03650340701639889.
  • Brady, N.; Weil, R. The Nature and Properties of Soils, 11th ed.; Prentice-Hall International Inc.: New Jersey, 1996.
  • Tamoutsidis, E.; Papadopoulos, I.; Tokatlidis, I.; Zotis, S.; Mavropoulos, T. Wet Sewage Sludge Application Effect on Soil Properties and Element Content of Leaf and Root Vegetables. J. Plant Nutr. 2002, 25, 1941–1955. DOI: 10.1081/PLN-120013286.
  • Antonious, G. F.; Kochhar, T. S.; Coolong, T. Yield, Quality, and Concentration of Seven Heavy Metals in Cabbage and Broccoli Grown in Sewage Sludge and Chicken Manure Amended Soil. J. Environ. Sci. Heal. A. 2012, 47, 1955–1965. DOI: 10.1080/03601234.2012.676509.
  • Waqas, M.; Khan, S.; Qing, H.; Reid, B. J.; Chao, C. The Effects of Sewage Sludge and Sewage Sludge Biochar on PAHs and Potentially Toxic Element Bioaccumulation in Cucumis Sativa L. Chemosphere 2014, 105, 53–61. DOI: 10.1016/j.chemosphere.2013.11.064.
  • Kumar, V.; Chopra, A. K.; Srivastava, S. Assessment of Heavy Metals in Spinach (Spinacia oleracea L.) Grown in Sewage Sludge-Amended Soil. Commun. Soil Sci. Plant Anal. 2016, 47, 221–236. DOI: 10.1080/00103624.2015.1122799.
  • Eid, E. M.; El-Bebany, A. F.; Alrumman, S. A.; Hesham, A.; Taher, M. A.; Fawy, K. F. Effects of Different Sewage Sludge Applications on Heavy Metal Accumulation, Growth and Yield of Spinach (Spinacia oleracea L.). Int. J. Phytoremediat. 2017, 19, 340–347. DOI: 10.1080/15226514.2016.1225286.
  • Eid, E. M.; Alrumman, S. A.; El-Bebany, A. F.; Hesham, A.; Taher, M. A.; Fawy, K. F. The Effects of Different Sewage Sludge Amendment Rates on the Heavy Metal Bioaccumulation, Growth and Biomass of Cucumbers (Cucumis sativus L.). Environ. Sci. Pollut. Res. 2017, 24, 16371–16382. DOI: 10.1007/s11356-017-9289-6.
  • Eid, E. M.; Alrumman, S. A.; El-Bebany, A. F.; Fawy, K. F.; Taher, M. A.; Hesham, A.; El-Shaboury, G. A.; Ahmed, M. T. The Evaluation of Sewage Sludge Application as a Fertilizer for Broad Bean (Faba sativa Bernh.) Crops. Food Energ. Secur. 2018, 7, e00142. DOI: 10.1002/fes3.142.
  • Eid, E. M.; Alrumman, S. A.; El-Bebany, A. F.; Fawy, K. F.; Taher, M. A.; Hesham, A.; El-Shaboury, G. A.; Ahmed, M. T. Evaluation of the Potential of Sewage Sludge as a Valuable Fertilizer for Wheat (Triticum aestivum L.) Crops. Environ. Sci. Pollut. Res. 2019, 26, 392–401. DOI: 10.1007/s11356-018-3617-3.
  • Lee, J. K. Statistical bioinformatics; Wiley-Blackwell: New Jersey, 2010.
  • Chaudri, A.; McGrath, S.; Gibbs, P.; Chambers, B.; Carlton-Smith, C.; Godley, A.; Bacon, J.; Campbell, C.; Aitken, M. Cadmium Availability to Wheat Grain in Soils Treated with Sewage Sludge or Metal Salts. Chemosphere 2007, 66, 1415–1423. DOI: 10.1016/j.chemosphere.2006.09.068.
  • Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The Influence of pH and Organic Matter Content in Paddy Soil on Heavy Metal Availability and their Uptake by Rice Plants. Environ. Pollut. 2011, 159, 84–91. DOI: 10.1016/j.envpol.2010.09.019.
  • Novotná, M.; Mikeš, O.; Komprdová, K. Development and Comparison of Regression Models for the Uptake of Metals into Various Field Crops. Environ. Pollut. 2015, 207, 357–364. DOI: 10.1016/j.envpol.2015.09.043.
  • Eid, E. M.; Alrumman, S. A.; Farahat, E. A.; El-Bebany, A. F. Prediction Models for Evaluating the Heavy Metal Uptake by Cucumbers (Cucumis sativus L.) Grown in Agricultural Soil Amended with Sewage Sludge. Environ. Monit. Assess. 2018, 190, 501. DOI: 10.1007/s10661-018-6885-y.
  • Eid, E. M.; Alrumman, S. A.; Galal, T. M.; El-Bebany, A. F. Prediction Models for Evaluating the Heavy Metal Uptake by Spinach (Spinacia oleracea L.) from Soil Amended with Sewage Sludge. Int. J. Phytoremediat. 2018, 19, 340–347. DOI: 10.1080/15226514.2018.1488815.
  • Kumar, V.; Thakur, R. K.; Kumar, P. Assessment of Heavy Metals Uptake by Cauliflower (Brassica oleracea var. botrytis) Grown in Integrated Industrial Effluent Irrigated Soils: A Prediction Modeling Study. Sci. Hortic. 2019, 257, 108682. DOI: 10.1016/j.scienta.2019.108682.
  • Eid, E. M.; Alrumman, S. A.; Galal, T. M.; El-Bebany, A. F. Regression Models for Monitoring Trace Metal Accumulations by Faba sativa Bernh. Plants Grown in Soils Amended with Different Rates of Sewage Sludge. Sci. Rep. 2019, 9, 5443. DOI: 10.1038/s41598-019-41807-9.
  • Ramadan, M. A. E.; Al-Ashkar, E. A. The Effect of Different Fertilizers on the Heavy Metals in Soil and Tomato Plant. Aust. J. Basic Appl. Sci. 2007, 1, 300–306. http://www.ajbasweb.com/old/ajbas/226-231.pdf.
  • Tudoreanu, L.; Phillips, C. J. C. Empirical Models of Cadmium Accumulation in Maize, Rye Grass and Soya Bean Plants. J. Sci. Food Agric. 2004, 84, 845–852. DOI: 10.1002/jsfa.1730.
  • Zhang, S.; Song, J.; Gao, H.; Zhang, Q.; Lv, M.-C.; Wang, S.; Liu, G.; Pan, Y.-Y.; Christie, P.; Sun, W. Improving Prediction of Metal Uptake by Chinese Cabbage (Brassica pekinensis L.) Based on a Soil-Plant Stepwise Analysis. Sci. Total Environ. 2016, 569-570, 1595–1605. DOI: 10.1016/j.scitotenv.2016.07.007.
  • Binder, D. L.; Dobermann, A.; Sander, D. H.; Cassman, K. G. Biosolids as Nitrogen Source for Irrigated Maize and Rainfed Sorghum. Soil Sci. Soc. Am. J. 2002, 66, 531–542. DOI: 10.2136/sssaj2002.0531.
  • Boulos, L. Flora of Egypt. Vol. 1: Azollaceae-Oxalidaceae; Al- Hadara Publishing: Cairo, Egypt, 1999.
  • Simpson, B. B.; Ogorzaly, M. C. Economic Botany: Plants in Our World; McGraw-Hill Inc.: New York, 1995.
  • Sharama, O. P. Hill's Economic Botany; Tata MaGraw-Hill Publishing Company Limited: New Delhi, 2000.
  • Türkmen, Ö.; Sensoy, S.; Dursun, A.; Turan, M. Sewage Sludge as a Substitute for Mineral Fertilization of Spinach (Spinacia oleracea L.) at Two Growing Periods. Acta Agr. Scand. B-S P. 2004, 54, 102–107. DOI: 10.1080/09064710410030221.
  • Wilke, B. M. Determination of Chemical and Physical Soil Properties. In Manual for Soil Analysis - Monitoring and Assessing Soil Bioremediation; Margesin, R.; Schinner, F., Eds.; Springer-Verlag: Heidelberg, 2005; pp 47–95.
  • Allen, S. E. Chemical Analysis of Ecological Materials; Blackwell Scientific Publications: London, 1989.
  • Eid, E. M.; Shaltout, K. H. Bioaccumulation and Translocation of Heavy Metals by Nine Native Plant Species Grown at a Sewage Sludge Dump Site. Int. J. Phytoremediat. 2016, 18, 1075–1085. DOI: 10.1080/15226514.2016.1183578.
  • Yang, H.; Li, Z.; Lu, L.; Long, J.; Liang, Y. Cross-Species Extrapolation of Prediction Models for Cadmium Transfer from Soil to Corn Grain. PLoS One. 2013, 8, e80855. DOI: 10.1371/journal.pone.0080855.
  • SPSS. SPSS Base 15.0 User’s Guide; SPSS Inc.: Chicago, 2006.
  • Antoniadis, V.; Robinson, J.; Alloway, B. Effects of Short-Term pH Fluctuations on Cadmium, Nickel, Lead, and Zinc Availability to Ryegrass in a Sewage Sludge-Amended Field. Chemosphere 2008, 71, 759–764. DOI: 10.1016/j.chemosphere.2007.10.015.
  • Usman, A.; Kuzyakov, Y.; Stahr, K. Sorption. Desorption, and Immobilization of Heavy Metals by Artificial Soil; University of Hohenhiem: Stuttgart, 2008.
  • Zhao, K. L.; Liu, X. M.; Xu, J. M.; Selim, H. M. Heavy Metal Contaminations in a Soil-Rice System: Identification of Spatial Dependence in Relation to Soil Properties of Paddy Fields. J. Hazard. Mater. 2010, 181, 778–787. DOI: 10.1016/j.jhazmat.2010.05.081.
  • Antoniadis, V.; Alloway, B. The Role of Dissolved Organic Carbon in the Mobility of Cd, Ni and Zn in Sewage Sludge-Amended Soils. Environ. Pollut. 2002, 117, 515–521. DOI: 10.1016/S0269-7491(01)00172-5.
  • Christou, A.; Theologides, C.; Costa, C.; Kalavrouziotis, I.; Varnavas, S. Assessment of Toxic Heavy Metals Concentrations in Soils and Wild and Cultivated Plant Species in Limni Abandoned Copper Mining Site, Cyprus. J. Geochem. Explor. 2017, 178, 16–22. DOI: 10.1016/j.gexplo.2017.03.012.
  • Farahat, E. A.; Galal, T. M.; Elawa, O. E.; Hassan, L. M. Health Risk Assessment and Growth Characteristics of Wheat and Maize Crops Irrigated with Contaminated Wastewater. Environ. Monit. Assess. 2017, 189, 535. DOI: 10.1007/s10661-017-6259-x.
  • Basta, N. T.; Ryan, J. A.; Chaney, R. L. Trace Element Chemistry in Residual-Treated Soil: Key Concepts and Metal Bioavailability. J. Environ. Qual. 2005, 34, 49–63. DOI: 10.2134/jeq2005.0049dup.
  • Dolgen, D.; Alpaslan, M.; Delen, N. Agricultural Recycling of Treatment-Plant Sludge: A Case Study for a Vegetable-Processing Factory. J. Environ. Manage. 2007, 84, 274–281. DOI: 10.1016/j.jenvman.2006.06.013.
  • Ahmed, D. A.; Slima, D. F. Heavy Metal Accumulation by Corchorus olitorius L. Irrigated with Wastewater. Environ. Sci. Pollut. Res. 2018, 25, 14996–15005. DOI: 10.1007/s11356-018-1675-1.
  • Lopes, C.; Herva, M.; Franco-Uría, A.; Roca, E. Multicorrelation Models and Uptake Factors to Estimate Extractable Metal Concentrations from Soil and Metal in Plants in Pasture Lands Fertilized with Manure. Environ. Pollut. 2012, 166, 17–22. DOI: 10.1016/j.envpol.2012.02.017.
  • Latare, A.; Kumar, O.; Singh, S.; Gupta, A. Direct and Residual Effect of Sewage Sludge on Yield, Heavy Metals Content and Soil Fertility under Rice-Wheat System. Ecol. Eng. 2014, 69, 17–24. DOI: 10.1016/j.ecoleng.2014.03.066.
  • Anikwe, J. C. Heavy Metal Accumulation and Arthropod Abundance in Leafy Vegetable Cultivation. Food Sci. Qual. Manage. 2013, 22, 35–39. https://pdfs.semanticscholar.org/0fcb/737545907d7195e2d532b1fa4768a4c7c7f9.pdf.
  • Żurek, G.; Rybka, K.; Pogrzeba, M.; Krzyżak, J.; Prokopiuk, K. Chlorophyll α Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses. PLos One. 2014, 9, e91475. DOI: 10.1371/journal.pone.0091475.
  • Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, 2011.
  • Chopra, A.; Pathak, C. Bioaccumulation and Translocation Efficiency of Heavy Metals in Vegetables Grown on Long-Term Wastewater Irrigated Soil near Bindal River, Dehradun. Agric. Res. 2012, 1, 157–164. DOI: 10.1007/s40003-012-0016-8.
  • Singh, R.; Agrawal, M. Effect of Different Sewage Sludge Applications on Growth and Yield of Vigna radiata L. field Crop: Metal Uptake by Plant. Ecol. Eng. 2010, 36, 969–972.
  • Boshoff, M.; De Jonge, M.; Scheifler, R.; Bervoets, L. Predicting as, Cd, Cu, Pb and Zn Levels in Grasses (Agrostis sp. and Poa sp.) and Stinging Nettle (Urtica dioica) Applying Soil-Plant Transfer Models. Sci. Total Environ. 2014, 493, 862–871. DOI: 10.1016/j.scitotenv.2014.06.076.
  • Rezvani, M.; Zaefarian, F. Bioaccumulation and Translocation Factors of Cadmium and Lead in Aeluropus littoralis. Aust. J. Agr. Eng. 2011, 2, 114–119. http://www.sciencej.com/rezvani_2_4_2011_114_119.pdf.
  • Waegeneers, N.; Ruttens, A.; De Temmerman, L. A Dynamic Model to Calculate Cadmium Concentrations in Bovine Tissues from Basic Soil Characteristics. Sci. Total Environ. 2011, 409, 2815–2823. DOI: 10.1016/j.scitotenv.2011.04.005.
  • Hough, R. L.; Breward, N.; Young, S. D.; Crout, N. M. J.; Tye, A. M.; Moir, A. M.; Thornton, I. Assessing Potential Risk of Heavy Metal Exposure from Consumption of Home-Produced Vegetables by Urban Populations. Environ. Health Persp. 2004, 112, 215–221. DOI: 10.1289/ehp.5589.
  • Bešter, P.; Lobnik, F.; Eržen, I.; Kastelec, D.; Zupan, M. Prediction of Cadmium Concentration in Selected Home-Produced Vegetables. Ecotox. Environ. Safe 2013, 96, 182–190. DOI: 10.1016/j.ecoenv.2013.06.011.
  • dos Santos-Araujo, S. N.; Swartjes, F. A.; Versluijs, K. W.; Moreno, F. N.; Alleoni, L. R. Soil-Plant Transfer Models for Metals to Improve Soil Screening Value Guidelines Valid for São Paulo. Environ. Monit. Assess. 2017, 189, 615. DOI: 10.1007/s10661-017-6298-3.
  • Gan, Y.; Wang, L.; Yang, G.; Dai, J.; Wang, R.; Wang, W. Multiple Factors Impact the Contents of Heavy Metals in Vegetables in High Natural Background Area of China. Chemosphere. 2017, 184, 1388–1395. DOI: 10.1016/j.chemosphere.2017.06.072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.