Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 2
195
Views
3
CrossRef citations to date
0
Altmetric
Articles

Evaluation of denitrification performance and bacterial community of a sequencing batch reactor under intermittent aeration

, , ORCID Icon & ORCID Icon
Pages 179-192 | Received 07 Aug 2019, Accepted 07 Oct 2019, Published online: 26 Oct 2019

References

  • Massara, T. M.; Malamis, S.; Guisasola, A.; Baeza, J. A.; Noutsopoulos, C.; Katsou, E. A Review on Nitrous Oxide (N2O) Emissions during Biological Nutrient Removal from Municipal Wastewater and Sludge Reject Water. Sci. Total Environ. 2017, 596, 106–123. DOI: 10.1016/j.scitotenv.2017.03.191.
  • Bernat, K.; Wojnowska-Baryła, I. Wojnowska-Baryła, I. Carbon Source in Aerobic Denitrification. Biochem. Eng. J. 2007, 36, 116–122. DOI: 10.1016/j.bej.2007.02.007.
  • Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic Denitrification: A Review of Important Advances of the Last 30 Years. Biotechnol. Bioprocess Eng. 2015, 20, 643–651.
  • Blaszczyk, M. Effect of Medium Composition on the Denitrification of Nitrate by Paracoccus denitrificans. Appl. Environ. Microbiol. 1993, 59, 3951–3953.
  • Ribera-Guardia, A.; Kassotaki, E.; Gutierrez, O.; Pijuan, M. Effect of Carbon Source and Competition for Electrons on Nitrous Oxide Reduction in a Mixed Denitrifying Microbial Community. Process Biochem. 2014, 49, 2228–2234. DOI: 10.1016/j.procbio.2014.09.020.
  • Xu, G.; Peng, J.; Feng, C.; Fang, F.; Chen, S.; Xu, Y.; Wang, X. Evaluation of Simultaneous Autotrophic and Heterotrophic Denitrification Processes and Bacterial Community Structure Analysis. Appl. Microbiol. Biotechnol. 2015, 99, 6527–6536. DOI: 10.1007/s00253-015-6532-2.
  • Enwall, K.; Philippot, L.; Hallin, S. Activity and Composition of the Denitrifying Bacterial Community Respond Differently to Long-Term Fertilization Activity and Composition of the Denitrifying Bacterial Community Respond Differently to Long-Term Fertilization. Appl. Environ. Microbiol 2005, 71, 8335–8343. DOI: 10.1128/AEM.71.12.8335-8343.2005.
  • Breisha, G. Z. Bio-Removal of Nitrogen from Wastewaters-a Review. Nat. Sci. 2010, 8, 210.
  • Kampschreur, M. J.; Temmink, H.; Kleerebezem, R.; Jetten, M. S. M.; van Loosdrecht, M. C. M. Nitrous Oxide Emission during Wastewater Treatment. Water Res. 2009, 43, 4093–4103. DOI: 10.1016/j.watres.2009.03.001.
  • Takaya, N.; Catalan-Sakairi, M. A. B.; Sakaguchi, Y.; Kato, I.; Zhou, Z.; Shoun, H. Aerobic Denitrifying Bacteria That Produce Low Levels of Nitrous Oxide. Appl. Environ. Microbiol. 2003, 69, 3152–3157. DOI: 10.1128/AEM.69.6.3152-3157.2003.
  • Alzate Marin, J. C.; Caravelli, A. H.; Zaritzky, N. E. Nitrification and Aerobic Denitrification in Anoxic-Aerobic Sequencing Batch Reactor. Bioresour. Technol 2016, 200, 380–387. DOI: 10.1016/j.biortech.2015.10.024.
  • Ahn, Y. H. Sustainable Nitrogen Elimination Biotechnologies: A Review. Process Biochem. 2006, 41, 1709–1721. DOI: 10.1016/j.procbio.2006.03.033.
  • Seifi, M.; Fazaelipoor, M. H. Modeling Simultaneous Nitrification and Denitrification (SND) in a Fluidized Bed Biofilm Reactor. Appl. Math. Model. 2012, 36, 5603–5613. DOI: 10.1016/j.apm.2012.01.004.
  • Lukow, T.; Diekmann, H. Aerobic Denitrification by a Newly Isolated Heterotrophic Bacterium Strain TL1. Biotechnol. Lett 1997, 19, 1157–1159.
  • Zhu, L.; Ding, W.; Feng, L. J.; Kong, Y.; Xu, J.; Xu, X. Y. Isolation of Aerobic Denitrifiers and Characterization for Their Potential Application in the Bioremediation of Oligotrophic Ecosystem. Bioresour. Technol. 2012, 108, 1–7.
  • Huang, H. K.; Tseng, S. K. Nitrate Reduction by Citrobacter diversus under Aerobic Environment. Appl. Microbiol. Biotechnol. 2001, 55, 90–94. DOI: 10.1007/s002530000363.
  • Kim, M.; Jeong, S.-Y.; Yoon, S. J.; Cho, S. J.; Kim, Y. H.; Kim, M. J.; Ryu, E. Y.; Lee, S.-J. Aerobic Denitrification of Pseudomonas putida AD-21 at Different C/N Ratios. J. Biosci. Bioeng. 2008, 106, 498–502. DOI: 10.1263/jbb.106.498.
  • Su, Q.; Ma, C.; Domingo-Félez, C.; Kiil, A. S.; Thamdrup, B.; Jensen, M. M.; Smets, B. F. Low Nitrous Oxide Production through Nitrifier-Denitrification in Intermittent-Feed High-Rate Nitritation Reactors. Water Res. 2017, 123, 429–438. DOI: 10.1016/j.watres.2017.06.067.
  • Lee, Y. Y.; Choi, H.; Cho, K. S. Effects of Carbon Source, C/N Ratio, Nitrate, Temperature, and pH on N2O Emission and Functional Denitrifying Genes during Heterotrophic Denitrification. J. Environ. Sci. Heal. - Part A 2019, 54, 16–29. DOI: 10.1080/10934529.2018.1503903.
  • Sander, R. Complilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, 3rd ed.; Max-Plank Institute of Chemistry: Mainz, Germany, 1999, pp 1–107.
  • Kozich, J. J.; Westcott, S. L.; Baxter, N. T.; Highlander, S. K.; Schloss, P. D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq. Appl. Environ. Microbiol. 2013, 79, 5112–5120. DOI: 10.1128/AEM.01043-13.
  • Wu, L.; Wen, C.; Qin, Y.; Yin, H.; Tu, Q.; Nostrand, J. D.; Van; Yuan, T.; Yuan, M.; Deng, Y.; Zhou, J. Phasing Amplicon Sequencing on Illumina Miseq for Robust Environmental Microbial Community Analysis. BMC Microbiol. 2015, 15, 1–12. DOI: 10.1186/s12866-015-0450-4.
  • Lee, Y.-Y.; Hong, S.; Cho, K.-S. Design and Shelf Stability Assessment of Bacterial Agents for Simultaneous Removal of Methane and Odors. J. Environ. Sci. Heal. Part A. 2019, 54, 906–913.
  • Lozupone, C.; Hamady, M.; Knight, R. UniFrac-an Online Tool for Comparing Microbial Community Diversity in a Phylogenetic Context. BMC Bioinformatics 2006, 7, 371.
  • Xia, L. C.; Steele, J. A.; Cram, J. A.; Cardon, Z. G.; Simmons, S. L.; Vallino, J. J.; Fuhrman, J. A.; Sun, F. Extended Local Similarity Analysis (eLSA) of Microbial Community and Other Time Series Data with Replicates. BMC Syst. Biol. 2011, 5, S15. DOI: 10.1186/1752-0509-5-S2-S15.
  • Cline, S. M.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; et al. Integration of Biological Networks and Gene Expression Data Using Cytoscape. Nat. Protoc. 2007, 2, 2366–2382. DOI: 10.1038/nprot.2007.324.
  • Matějů, V.; Čižinská, S.; Krejčí, J.; J, T. Biological Water denitrification - A Review. Enzyme Microb. Technol. 1992, 14, 170–183. DOI: 10.1016/0141-0229(92)90062-S.
  • Ge, S.; Peng, Y.; Wang, S.; Lu, C.; Cao, X.; Zhu, Y. Nitrite Accumulation under Constant Temperature in Anoxic Denitrification Process: The Effects of Carbon Sources and COD/NO 3-N. Bioresour. Technol 2012, 114, 137–143. DOI: 10.1016/j.biortech.2012.03.016.
  • Adouani, N.; Lendormi, T.; Limousy, L.; Sire, O. Effect of the Carbon Source on N2O Emissions during Biological Denitrification. Resour. Conserv. Recycl. 2010, 54, 299–302. DOI: 10.1016/j.resconrec.2009.07.011.
  • Onnis-Hayden, A.; Gu, A. Z. Comparisons of Organic Sources for Denitrification: Biodegradability, Denitrification Rates, Kinetic Constants and Practical Implication for Their Application in WWTPs. Proc. Water Environ. Fed. 2008, 2008, 253–273. DOI: 10.2175/193864708788735510.
  • Andalib, M.; Nakhla, G.; McIntee, E.; Zhu, J. Simultaneous Denitrification and Methanogenesis (SDM): Review of Two Decades of Research. Desalination 2011, 279, 1–14. DOI: 10.1016/j.desal.2011.06.018.
  • Kargi, F.; Uygur, A. Effect of Carbon Source on Biological Nutrient Removal in a Sequencing Batch Reactor. Bioresour. Technol 2003, 89, 89–93. DOI: 10.1016/S0960-8524(03)00031-2.
  • Yang, X.; Wang, S.; Zhou, L. Effect of Carbon Source, C/N Ratio, Nitrate and Dissolved Oxygen Concentration on Nitrite and Ammonium Production from Denitrification Process by Pseudomonas stutzeri D6. Bioresour. Technol. 2012, 104, 65–72. DOI: 10.1016/j.biortech.2011.10.026.
  • Krishna Mohan, T. V.; Nancharaiah, Y. V.; Venugopalan, V. P.; Satya Sai, P. M. Effect of C/N Ratio on Denitrification of High-Strength Nitrate Wastewater in Anoxic Granular Sludge Sequencing Batch Reactors. Ecol. Eng. 2016, 91, 441–448. DOI: 10.1016/j.ecoleng.2016.02.033.
  • Kishida, N.; Kim, J. H.; Kimochi, Y.; Nishimura, O.; Sasaki, H.; Sudo, R. Effect of C/N Ratio on Nitrous Oxide Emission from Swine Wastewater Treatment Process. Water Sci. Technol. 2004, 49, 359–365. DOI: 10.2166/wst.2004.0775.
  • Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous Oxide Production in High-Loading Biological Nitrogen Removal Process under Low COD/N Ratio Condition. Water Res. 2001, 35, 657–664. DOI: 10.1016/S0043-1354(00)00309-2.
  • Robertson, L. A.; van Niel, E. W.; Torremans, R. A.; Kuenen, J. G. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 1988, 54, 2812–2818.
  • Joo, H. S.; Hirai, M.; Shoda, M. Characteristics of Ammonium Removal by Heterotrophic Nitrification-Aerobic Denitrification by Alcaligenes faecalis No. 4. J. Biosci. Bioeng 2005, 100, 184–191. DOI: 10.1263/jbb.100.184.
  • Zhang, J.; Wu, P.; Hao, B.; Yu, Z. Heterotrophic Nitrification and Aerobic Denitrification by the Bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 2011, 102, 9866–9869. DOI: 10.1016/j.biortech.2011.07.118.
  • Padhi, S. K.; Tripathy, S.; Sen, R.; Mahapatra, A. S.; Mohanty, S.; Maiti, N. K. Characterisation of Heterotrophic Nitrifying and Aerobic Denitrifying Klebsiella pneumonia CF-S9 Strain for Bioremediation of Wastewater. Int. Biodeterior. Biodegrad. 2013, 78, 67–73. DOI: 10.1016/j.ibiod.2013.01.001.
  • Virdis, B.; Read, S. T.; Rabaey, K.; Rozendal, R. A.; Yuan, Z.; Keller, J. Biofilm Stratification during Simultaneous Nitrification and Denitrification (SND) at a Biocathode. Bioresour. Technol. 2011, 102, 334–341. DOI: 10.1016/j.biortech.2010.06.155.
  • Andres, H. J.; Kaetzke, A.; Kampfer, P.; Ludwig, W.; Fuchs, G. Taxonomic Position of Aromatic-Degrading Denitrifying Pseudomonad Strains K172 and KB740 and Their Description as New Members of the Genera Thauera, as Thauera Aromatic sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., Respectively. Int. J. Syst. Bacteriol. 1995, 45, 327–333. DOI: 10.1099/00207713-45-2-327.
  • Scholten, E.; Lukow, T.; Auling, I. G.; Kroppenstedt, R. M.; Rainey, F. A.; Diekmann, H. Thauera mechernichensis sp. nov., an Aerobic Denitrifier from a Leachate Treatment Plant. Int. J. Syst. Bacteriol. 1999, 49, 1045–1051. DOI: 10.1099/00207713-49-3-1045.
  • Thomsen, T. R.; Kong, Y.; Nielsen, P. H. Ecophysiology of Abundant Denitrifying Bacteria in Activated Sludge. FEMS Microbiol. Ecol. 2007, 60, 370–382. DOI: 10.1111/j.1574-6941.2007.00309.x.
  • Liu, B.; Frostegard, A.; Shapleigh, J. P. Draft Genome Sequences of Five Strains in the Genus Thauera. Genome Announc. 2013, 1, 1–2.
  • Etchebehere, C.; Cabezas, A.; Dabert, P.; Muxi, L. Evolution of the Bacterial Community during Granules Formation in Denitrifying Reactors Followed by Molecular, Culture-Independent Techniques. Environ. Microbiol. 2003, 48, 85–90.
  • Etchebehere, C.; Errazquin, M. I.; Cabezas, A.; Pianzzola, M. J.; Mallo, M.; Lombardi, P.; Ottonello, G.; Borzacconi, L.; Muxí, L. Sludge Bed Development in Denitrifying Reactors Using Different Inocula-Performance and Microbiological Aspects. Water Sci. Technol. 2002, 45, 365–370. DOI: 10.2166/wst.2002.0370.
  • Liu, B.; Mao, Y.; Bergaust, L.; Bakken, L. R.; Frostegård, Å. Strains in the Genus Thauera Exhibit Remarkably Different Denitrification Regulatory Phenotypes. Environ. Microbiol. 2013, 15, 2816–2828.
  • Du, R.; Peng, Y.; Cao, S.; Li, B.; Wang, S.; Niu, M. Mechanisms and Microbial Structure of Partial Denitrification with High Nitrite Accumulation. Appl. Microbiol. Biotechnol. 2016, 100, 2011–2021. DOI: 10.1007/s00253-015-7052-9.
  • Hiraishi, A.; Sugiyama, J.; Shin, Y. K. Brachymonas denitrificans Gen. nov., sp. nov., an Aerobic Chemoorganotrophic Bacterium Which Contains Rhodoquinones, and Evolutionary Relationships of Rhodoquinone Producers to Bacterial Species with Various Quinone Classes. J. Gen. Appl. Microbiol. 1995, 41, 99–117. DOI: 10.2323/jgam.41.99.
  • Leta, S.; Gumaelius, L.; Assefa, F.; Dalhammar, G. Identification of Efficient Denitrifying Bacteria from Tannery Wastewaters in Ethiopia and a Study of the Effects of Chromium III and Sulphide on Their Denitrification Rate. World J. Microbiol. Biotechnol. 2004, 20, 405–411. DOI: 10.1023/B:WIBI.0000033069.24982.6e.
  • Adav, S. S.; Lee, D. J.; Lai, J. Y. Enhanced Biological Denitrification of High Concentration of Nitrite with Supplementary Carbon Source. Appl. Microbiol. Biotechnol. 2010, 85, 773–778. DOI: 10.1007/s00253-009-2265-4.
  • Albertsen, M.; Hansen, L. B. S.; Saunders, A. M.; Nielsen, P. H.; Nielsen, K. L. A Metagenome of a Full-Scale Microbial Community Carrying out Enhanced Biological Phosphorus Removal. ISME J. 2012, 6, 1094–1106. DOI: 10.1038/ismej.2011.176.
  • Almeida, S.; Sousa, C.; Abreu, V.; Diniz, C.; Dorneles, E. M. S.; Lage, A. P.; Barh, D.; Azevedo, V. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis. Int. J. Genomics 2017, 2017, 1–12. DOI: 10.1155/2017/9481756.
  • Liu, X.; Wang, L.; Pang, L. Application of a Novel Strain Corynebacterium pollutisoli SPH6 to Improve Nitrogen Removal in an Anaerobic/Aerobic-Moving Bed Biofilm Reactor (a/O-MBBR). Bioresour. Technol. 2018, 269, 113–120. DOI: 10.1016/j.biortech.2018.08.076.
  • Nishimura, T.; Vertès, A. A.; Shinoda, Y.; Inui, M.; Yukawa, H. Anaerobic Growth of Corynebacterium glutamicum Using Nitrate as a Terminal Electron Acceptor. Appl. Microbiol. Biotechnol. 2007, 75, 889–897. DOI: 10.1007/s00253-007-0879-y.
  • Yuan, Y.; Liu, J.; Ma, B.; Liu, Y.; Wang, B.; Peng, Y. Improving Municipal Wastewater Nitrogen and Phosphorous Removal by Feeding Sludge Fermentation Products to Sequencing Batch Reactor (SBR). Bioresour. Technol. 2016, 222, 326–334. DOI: 10.1016/j.biortech.2016.09.103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.