Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 4
159
Views
2
CrossRef citations to date
0
Altmetric
Articles

Isolation, characterization and growth kinetics of phenol hyper-tolerant bacteria from sewage-fed aquaculture system

, ORCID Icon, , &
Pages 333-344 | Received 25 Jul 2019, Accepted 13 Nov 2019, Published online: 01 Dec 2019

References

  • Hill, G. A.; Robinson, C. W. Substrate Inhibition Kinetics: Phenol Degradation by Pseudomonas Putida. Biotechnol. Bioeng. 1975, 17, 1599–1615. DOI: 10.1002/bit.260171105.
  • Al-Khalid, T.; El-Naas, M. H. Aerobic Biodegradation of Phenols: A Comprehensive Review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1631–1690. DOI: 10.1080/10643389.2011.569872.
  • Hussain, A.; Dubey, S. K.; Kumar, V. Kinetic Study for Aerobic Treatment of Phenolic Wastewater. Water Resour. Industr. 2015, 11, 81–90. DOI: 10.1016/j.wri.2015.05.002.
  • Fedorak, P. M.; Hrudey, S. E. Anaerobic Degradation of Phenolic Compounds with Applications to Treatment of Industrial Waste Waters. In Biotechnology Systems, Vol. I; Wise, D. L., Ed.; CRC Press Inc.: Boca Raton, FL, 1988; pp 169–225.
  • Autenrieth, R. L.; Bonner, J. S.; Akgerman, A.; Okaygun, M.; McCreary, E. M. Biodegradation of Phenolic Wastes. J. Hazard. Mater. 1991, 28, 29–53. DOI: 10.1016/0304-3894(91)87004-L.
  • Przybulewska, K.; Wieczorek, A.; Nowak, A.; Pochrzaszcz, M. The Isolation of Microorganisms Capable of Phenol Degradation. Pol. J. Microbiol. 2006, 55, 63–67.
  • Saha, N. C.; Bhunia, F.; Kaviraj, A. Toxicity of Phenol to Fish and Aquatic Ecosystems. Bull. Environ. Contam. Toxicol. 1999, 63, 195–202. DOI: 10.1007/s001289900966.
  • Bandyopadhyay, K.; Das, D.; Maiti, B. R. Kinetics of Phenol Degradation Using Pseudomonas Putida Mtcc 1194. Bioprocess Eng. 1998, 18, 373–377. DOI: 10.1007/PL00008996.
  • Kahru, A.; Maloverjan, A.; Sillak, H.; Põllumaa, L. The Toxicity and Fate of Phenolic Pollutants in the Contaminated Soils Associated with the Oil-Shale Industry. Environ. Sci. & Pollut. Res. Int. 2002, (1), 27–33.
  • Abd-El-Haleem, D.; Moawad, H.; Zaki, E. A.; Zaki, S. Molecular Characterization of Phenol-Degrading Bacteria Isolated from Different Egyptian Ecosystems. Microb. Ecol. 2002, 43, 217–224. DOI: 10.1007/s00248-002-2003-2.
  • Arutchelvan, V.; Kanakasabai, V.; Nagarajan, S.; Muralikrishnan, V. Isolation and Identification of Novel High Strength Phenol Degrading Bacterial Strains from Phenol-Formaldehyde Resin Manufacturing Industrial Wastewater. J. Hazard. Mater. 2005, 127, 238–243. DOI: 10.1016/j.jhazmat.2005.04.043.
  • El-Sayed, W. S.; Ibrahim, M. K.; Abu-Shady, M.; El-Beih, F.; Ohmura, N.; Saiki, H.; Ando, A. Isolation and Characterization of Phenol-Catabolizing Bacteria from a Coking Plant. Biosci. Biotechnol. Biochem. 2003, 67, 2026–2029. DOI: 10.1271/bbb.67.2026.
  • Whiteley, A. S.; Wiles, S.; Lilley, A. K.; Philp, J.; Bailey, M. J. Ecological and Physiological Analyses of Pseudomonad Species within a Phenol Remediation System. J. Microbiol. Methods 2001, 44, 79–88. DOI: 10.1016/S0167-7012(00)00231-1.
  • Watanabe, K.; Teramoto, M.; Futamata, H.; Harayama, S. Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge. Appl. Environ. Microbiol. 1998, 64, 4396–4402.
  • Chen, C. L.; Wu, J. H.; Liu, W. T. Identification of Important Microbial Populations in the Mesophilic and Thermophilic Phenol-Degrading Methanogenic Consortia. Water Res. 2008, 42, 1963–1976. DOI: 10.1016/j.watres.2007.11.037.
  • Jiang, Y.; Wen, J.; Bai, J.; Jia, X.; Hu, Z. Biodegradation of Phenol at High Initial Concentration by Alcaligenes Faecalis. J. Hazard. Mater. 2007, 147, 672–676. DOI: 10.1016/j.jhazmat.2007.05.031.
  • Babich, H.; Davis, D. L. Phenol: A Review of Environmental and Health Risks. Regul. Toxicol. Pharmacol. 1981, 1, 90–109. DOI: 10.1016/0273-2300(81)90071-4.
  • DeGraeve, G. M.; Geiger, D. L.; Meyer, J. S.; Bergman, H. L. Acute and Embryo-Larval Toxicity of Phenolic Compounds to Aquatic Biota. Arch. Environ. Contam. Toxicol. 1980, 9, 557–568. DOI: 10.1007/BF01056935.
  • Pawlowsky, U.; Howell, J. A. Mixed Culture Biooxidation of Phenol. I. Determination of Kinetic Parameters. Biotechnol. Bioeng. 1973, 15, 889–896. DOI: 10.1002/bit.260150506.
  • Onysko, K. A.; Budman, H. M.; Robinson, C. W. Effect of Temperature on the Inhibition Kinetics of Phenol Biodegradation by Pseudomonas Putida Q5. Biotechnol. Bioeng. 2000, 70, 291–299. DOI: 10.1002/1097-0290(20001105)70:3<291::AID-BIT6>3.0.CO;2-Y.
  • Hussan, A. Threats to Fish Diversity of East Kolkata Wetlands and Conservation Needs. Aquacult. Times. 2016, 2, 10–15.
  • Pal, S.; Manna, S.; Chattopadhyay, B.; Mukhopadhyay, S. K. Carbon Sequestration and Its Relation with Some Soil Properties of East Kolkata Wetlands (a Ramsar Site): a Spatio-Temporal Study Using Radial Basis Functions. Model. Earth Syst. Environ. 2016, 2, 80. DOI: 10.1007/s40808-016-0136-4.
  • Maitra, N.; Bandopadhyay, C.; Samanta, S.; Sarkar, K.; Sharma, A. P.; Manna, S. K. Isolation, Identification and Efficacy of Inorganic Phosphate-Solubilizing Bacteria from Oxbow Lakes of West Bengal, India. Geomicrobiol. J. 2015, 32, 751–758. DOI: 10.1080/01490451.2014.981769.
  • Haldane, J. Enzymes; MIT Press: Cambridge, 1965.
  • Aiba, S.; Shoda, M.; Nagatani, M. Kinetics of Product Inhibition in Alcohol Fermentation. Biotechnol. Bioeng. 1968, 10, 845–864. DOI: 10.1002/bit.260100610.
  • Yano, T.; Nakahara, T.; Kamiyama, S.; Yamada, K. Kinetic Studies on Microbial Activities in Concentrated Solutions. Agric. Biol. Chem. 1966, 30, 42–48. DOI: 10.1080/00021369.1966.10858549.
  • dwards, V. H. The Influence of High Substrate Concentrations on Microbial Kinetics. Biotechnol. Bioeng. 1970, 12, 679–712. DOI: 10.1002/bit.260120504.
  • Webb, J. L. Enzyme and Metabolic Inhibitors; Academic Press: New York, 1963.
  • Silva, A. S.; Camargo, FAdO.; Andreazza, R.; Jacques, R. J. S.; Baldoni, D. B.; Bento, F. M. Enzymatic Activity of Catechol 1,2-Dioxygenase and Catechol 2,3-Dioxygenase Produced by Gordonia Polyisoprenivorans. Quím. Nova 2012, 35, 1587–1592. DOI: 10.1590/S0100-40422012000800018.
  • Anzai, Y.; Kim, H.; Park, J. Y.; Wakabayashi, H.; Oyaizu, H. Phylogenetic Affiliation of the Pseudomonads Based on 16s Rrna Sequence. Int. J. Syst. Evol. Microbiol. 2000, 50, 1563–1589. DOI: 10.1099/00207713-50-4-1563.
  • Hinteregger, C.; Leitner, R.; Loidl, M.; Ferschl, A.; Streichsbier, F. Degradation of Phenol and Phenolic Compounds by Pseudomonas Putida Ekii. Appl. Microbiol. Biotechnol. 1992, 37, 252–259.
  • Razika, B.; Abbes, B.; Messaoud, C.; Soufi, K. Phenol and Benzoic Acid Degradation by Pseudomonas Aeruginosa. J. Water Resour. Protect. 2010, 2, 788–791.
  • Hasan, S. A.; Jabeen, S. Degradation Kinetics and Pathway of Phenol by Pseudomonas and Bacillus Species. Biotechnol. Biotechnol. Equipment 2015, 29, 45–53. DOI: 10.1080/13102818.2014.991638.
  • Milo, R.; Duffner, F.; Bauer, M.; Mueller, R. Degradation of Phenol by Thermophilic Bacillus Species, Purification and Characteriza-Tion of Catechol 2,3-Dioksygenase. Hung. Biochem. Soc. 1997, 8, 39.
  • Djokic, L.; Narancic, T.; Nikodinovic-Runic, J.; Jeremic, S.; Vasiljevic, B. Four Bacillus Sp. Soil Isolates Capable of Degrading Phenol, Toluene, Biphenyl, Naphthalene and Other Aromatic Compounds Exhibit Different Aromatic Catabolic Potentials. Arch. Biol. Sci., Belgrade. 2011, 63, 1057–1067.
  • Paller, G.; Hommel, R. K.; Kleber, H. P. Phenol Degradation by Acinetobacter Calcoaceticus Ncib 8250. J. Basic Microbiol. 1995, 35, 325–335. DOI: 10.1002/jobm.3620350508.
  • Nandi, L.; Maitra, N.; Manna, S. K.; Panigrahi, A. K. Phenol Tolerance of Bacteria- a Case of Spontaneous or Adaptive Mutation? Int. J. Bio. Sci. 2019, 15, 110–119. DOI: 10.12692/ijb/15.1.110-119.
  • Heipieper, H. J.; Diefenbach, R.; Keweloh, H. Conversion of Cis Unsaturated Fatty Acids to Trans, a Possible Mechanism for the Protection of Phenol-Degrading Pseudomonas Putida P8 from Substrate Toxicity. Appl. Environ. Microbiol. 1992, 58, 1847–1852.
  • Takeo, M.; Nishimura, M.; Shirai, M.; Takahashi, H.; Negoro, S. Purification and Characterization of Catechol 2,3-Dioxygenase from the Aniline Degradation Pathway of Acinetobacter Sp. Yaa and Its Mutant Enzyme, Which Resists Substrate Inhibition. Biosci. Biotechnol. Biochem. 2007, 71, 1668–1675. DOI: 10.1271/bbb.70079.
  • Tuan, N. N.; Lin, Y. W.; Huang, S. L. Catabolism of 4-Alkylphenols by Acinetobacter Sp. Op5: Genetic Organization of the Oph Gene Cluster and Characterization of Alkylcatechol 2, 3-Dioxygenase. Bioresour. Technol. 2013, 131, 420–428. DOI: 10.1016/j.biortech.2012.12.086.
  • Yang, C. F.; Lee, C. M. Enrichment, Isolation, and Characterization of 4-Chlorophenol-Degrading Bacterium Rhizobium Sp. 4-Cp-20. Biodegradation 2008, 19, 329–336. DOI: 10.1007/s10532-007-9139-1.
  • Molin, G.; Nilsson, I. Degradation of Phenol by Pseudomonas Putida Atcc 11172 in Continuous Culture at Different Ratios of Biofilm Surface to Culture Volume. Appl. Environ. Microbiol. 1985, 50, 946–950.
  • Loh, K. C.; Tan, C. P. Effect of Additional Carbon Sources on Biodegradation of Phenol. Bull. Environ. Contam. Toxicol. 2000, 64, 756–763. DOI: 10.1007/s0012800068.
  • Banerjee, A.; Ghoshal, A. K. Phenol Degradation by Bacillus Cereus: Pathway and Kinetic Modeling. Bioresour. Technol. 2010, 101, 5501–5507. DOI: 10.1016/j.biortech.2010.02.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.