Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 4
251
Views
1
CrossRef citations to date
0
Altmetric
Articles

Comparative time-based intermediates study of ozone oxidation of 4-chloro- and 4-nitrophenols followed by LCMS-TOF

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 385-401 | Received 04 Jul 2019, Accepted 30 Nov 2019, Published online: 18 Dec 2019

References

  • Shoaff, J. R.; Calafat, A. M.; Schantz, S. L.; Korrick, S. A. Endocrine Disrupting Chemical Exposure and Maladaptive Behavior during Adolescence. Env. Res. 2019, 172, 231–241. DOI: 10.1016/j.envres.2018.12.053.
  • Lv, Y. Z.; Yao, L.; Wang, L.; Liu, W. R.; Zhao, J. L.; He, L. Y.; Ying, G. G. Bioaccumulation, Metabolism, and Risk Assessment of Phenolic Endocrine Disrupting Chemicals in Specific Tissues of Wild Fish. Chemosphere 2019, 226, 607–615. DOI: 10.1016/j.chemosphere.2019.03.187.
  • Tolosana-Moranchel, A.; Ovejero, D.; Barco, B.; Bahamonde, A.; Díaz, E.; Faraldos, M. An Approach on the Comparative Behavior of Chloro/Nitro Substituted Phenols Photocatalytic Degradation in Water. J. Environ. Chem. Eng. 2019, 7, 103051. DOI: 10.1016/j.jece.2019.103051.
  • Fan, Z.; Wei, T.; Shi, H.; Tang, B.; Zhao, G. Adsorption Driven Preferential Degradation of Alkyl Phenols on Hydrophobic Perfluoroalkyl Modified {0 0 1}-TiO2. Chem. Eng. J. 2019, 357, 689–697.
  • Michalík, M.; Poliak, P.; Klein, E.; Lukeš, V. On the Toxicity of Para-Substituted Phenols and Their Quinone Metabolites: Quantum Chemical Study. Chem. Phys. Lett. 2018, 709, 71–76. DOI: 10.1016/j.cplett.2018.08.038.
  • Michałowicz, J.; Duda, W. Phenols–Sources and Toxicity. Polish Journal of Environmental Studies. 2007., 16.
  • Xiong, Z.; Zhang, H.; Zhang, W.; Lai, B.; Yao, G. Removal of Nitrophenols and Their Derivatives by Chemical. Redox: A Review. Chem. Eng. J. 2019, 359, 13–31.
  • Xiong, Z.; Cao, J.; Lai, B.; Yang, P. Comparative Study on Degradation of p-Nitrophenol in Aqueous Solution by mFe/Cu/O3 and mFe0/O3 Processes. J. Industr. Eng. Chem. 2018, 59, 196–207.
  • Anitha, B.; Devi, L. G. Study of Reaction Dynamics of Photocatalytic Degradation of 4-Chlorophenol Using SrTiO3, Sulfur Doped SrTiO3, Silver Metallized SrTiO3 and Silver Metallized Sulfur Doped SrTiO3 Catalysts: Detailed Analysis of Kinetic Results. Surfaces Interfaces 2019, 16, 50–58. DOI: 10.1016/j.surfin.2019.04.009.
  • Yang, Z.; Zhang, X.; Pu, S.; Ni, R.; Lin, Y.; Liu, Y. Novel Fenton-like System (Mg/Fe-O2) for Degradation of 4-Chlorophenol. Environ. Pollut. 2019, 250, 906–913. DOI: 10.1016/j.envpol.2019.04.096.
  • Zeng, L.; Gong, J.; Dan, J.; Li, S.; Zhang, J.; Pu, W.; Yang, C. Novel Visible Light Enhanced Pyrite-Fenton System toward Ultrarapid Oxidation of p-Nitrophenol: Catalytic Activity, Characterization and Mechanism. Chemosphere 2019, 228, 232–240. DOI: 10.1016/j.chemosphere.2019.04.103.
  • Zhang, C.; Li, T.; Zhang, J.; Yan, S.; Qin, C. Degradation of p-Nitrophenol Using a Ferrous-Tripolyphosphate Complex in the Presence of Oxygen: The Key Role of Superoxide Radicals. Appl. Catalysis B: Environ. 2019, 259, 118030. DOI: 10.1016/j.apcatb.2019.118030.
  • Oputu, O. U.; Fatoki, O. S.; Opeolu, B. O.; Akharame, M. O. Degradation Pathway of Ozone Oxidation of Phenols and Chlorophenols as Followed by LC-MS-TOF. Ozone: Sci. & Eng. 2019,. DOI: 10.1080/01919512.2019.1660617.
  • Thomas, J.; Radhika.; Yoon, S. M. Nd3+-Doped TiO2 Nanoparticles Incorporated with Heteropoly Phosphotungstic Acid: A Novel Solar Photocatalyst for Degradation of 4-Chlorophenol in Water. J. Mol. Catalysis A: Chem. 2016, 411, 146–156. DOI: 10.1016/j.molcata.2015.10.021.
  • Oputu, O.; Chowdhury, M.; Nyamayaro, K.; Cummings, F.; Fester, V.; Fatoki, O. A Novel β-FeOOH/NiO Composite Material as a Potential Catalyst for Catalytic Ozonation Degradation of 4-Chlorophenol. RSC Adv. 2015, 5, 59513–59521. DOI: 10.1039/C5RA09177B.
  • Yang, L.; Luo, S.; Li, Y.; Xiao, Y.; Kang, Q.; Cai, Q. High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu2O/TiO2 pn Heterojunction Network Catalyst. Environ. Sci. Technol. 2010, 44, 7641–7646. DOI: 10.1021/es101711k.
  • Xiong, Z.; Lai, B.; Yuan, Y.; Cao, J.; Yang, P.; Zhou, Y. Degradation of p-Nitrophenol (PNP) in Aqueous Solution by a Micro-Size Fe0/O3 Process (mFe0/O3): Optimization, Kinetic, Performance and Mechanism. Chem. Eng. J. 2016, 302, 137–145.
  • Kurian, M.; Nair, D. S. Heterogeneous Fenton Behavior of Nano Nickel Zinc Ferrite Catalysts in the Degradation of 4-Chlorophenol from Water under Neutral Conditions. J. Water Process Eng. 2015, 8, e37–e49. DOI: 10.1016/j.jwpe.2014.10.011.
  • Lai, T. L.; Yong, K. F.; Yu, J. W.; Chen, J. H.; Shu, Y. Y.; Wang, C. B. High Efficiency Degradation of 4-Nitrophenol by Microwave-Enhanced Catalytic Method. J. Hazard. Mat. 2011, 185, 366–372. DOI: 10.1016/j.jhazmat.2010.09.044.
  • Tang, L.; Tang, J.; Zeng, G.; Yang, G.; Xie, X.; Zhou, Y.; Pang, Y.; Fang, Y.; Wang, J.; Xiong, W. Rapid Reductive Degradation of Aqueous p-Nitrophenol Using Nanoscale Zero-Valent Iron Particles Immobilized on Mesoporous Silica with Enhanced Antioxidation Effect. Appl. Surf. Sci. 2015, 333, 220–228. DOI: 10.1016/j.apsusc.2015.02.025.
  • Meijide, J.; Rosales, E.; Pazos, M.; Sanroman, M. A. p-Nitrophenol Degradation by electro-Fenton Process: Pathway, Kinetic Model and Optimization Using Central Composite Design. Chemosphere 2017, 185, 726–736. DOI: 10.1016/j.chemosphere.2017.07.067.
  • Li, X.; Hou, Y.; Zhao, Q.; Teng, W.; Hu, X.; Chen, G. Capability of Novel ZnFe2O4 Nanotube Arrays for Visible-Light Induced Degradation of 4-Chlorophenol. Chemosphere 2011, 82, 581–586. DOI: 10.1016/j.chemosphere.2010.09.068.
  • Zhao, J.; Zhang, Y.; Quan, X.; Chen, S. Enhanced Oxidation of 4-Chlorophenol Using Sulfate Radicals Generated from Zero-Valent Iron and Peroxydisulfate at Ambient Temperature. Separation Purification Technol. 2010, 71, 302–307. DOI: 10.1016/j.seppur.2009.12.010.
  • Carlos, L.; Fabbri, D.; Capparelli, A. L.; Prevot, A. B.; Pramauro, E.; Einschlag, F. S. Intermediate Distributions and Primary Yields of Phenolic Products in Nitrobenzene Degradation by Fenton's Reagent. Chemosphere 2008, 72, 952–958. DOI: 10.1016/j.chemosphere.2008.03.042.
  • Bartosińska, E.; Buszewska-Forajta, M.; Siluk, D. GC–MS and LC–MS Approaches for Determination of Tocopherols and Tocotrienols in Biological and Food Matrices. Journal of Pharm. Biomed. Anal. 2016, 127, 156–169. DOI: 10.1016/j.jpba.2016.02.051.
  • Kumar, R.; Kabir, A.; Furton, K. G.; Malik, A. K. Development of a Fabric Phase Sorptive Extraction with High‐Performance Liquid Chromatography and Ultraviolet Detection Method for the Analysis of Alkyl Phenols in Environmental Samples. J. Sep. Sci. 2015, 38, 3228–3238.
  • Kalili, K. M.; de Villiers, A. Recent Developments in the HPLC Separation of Phenolic Compounds. J. Sep. Science 2011, 34, 854–876. DOI: 10.1002/jssc.201000811.
  • Ye, X.; Kuklenyik, Z.; Needham, L. L.; Calafat, A. M. Automated on-Line Column-Switching HPLC-MS/MS Method with Peak Focusing for the Determination of Nine Environmental Phenols in Urine. Anal. Chem. 2005, 77, 5407–5413. DOI: 10.1021/ac050390d.
  • Sosa-FerreraMahugo-Santana, Z. C.; Santana-Rodríguez, J. J. New Developments in Liquid Chromatography Mass Spectrometry for the Determination of Micropollutants. Chromatogr. Res. Internat. 2012, 2012, 1. DOI: 10.1155/2012/748989.
  • Hisaindee, S.; Meetani, M.; Rauf, M. Application of LC-MS to the Analysis of Advanced Oxidation Process (AOP) Degradation of Dye Products and Reaction Mechanisms. Trend.Analyt. Chem. 2013, 49, 31–44. DOI: 10.1016/j.trac.2013.03.011.
  • Wang, M.; Fang, G.; Liu, P.; Zhou, D.; Ma, C.; Zhang, D.; Zhan, J. Fe3O4@ β-CD Nanocomposite as Heterogeneous Fenton-like Catalyst for Enhanced Degradation of 4-Chlorophenol (4-CP). Appl. Catalysis B: Environ. 2016, 188, 113–122. DOI: 10.1016/j.apcatb.2016.01.071.
  • Elghniji, K.; Hentati, O.; Mlaik, N.; Mahfoudh, A.; Ksibi, M. Photocatalytic Degradation of 4-Chlorophenol under P-Modified TiO2/UV System: Kinetics, Intermediates, Phytotoxicity and Acute Toxicity. J. Environ. Sci. 2012, 24, 479–487. DOI: 10.1016/S1001-0742(10)60659-6.
  • Xu, L.; Wang, J. Magnetic Nanoscaled Fe3O4/CeO2 Composite as an Efficient Fenton-like Heterogeneous Catalyst for Degradation of 4-Chlorophenol. Environ. Sci. Technol. 2012, 46, 10145–10153. DOI: 10.1021/es300303f.
  • Cheng, Y.; Sun, H.; Jin, W.; Xu, N. Photocatalytic Degradation of 4-Chlorophenol with Combustion Synthesized TiO2 under Visible Light Irradiation. Chem. Eng. J. 2007, 128, 127–133. DOI: 10.1016/j.cej.2006.09.009.
  • Xu, X-w.; Xu, X-h.; Shi, H-x.; Wang, D-h. Study on US/O3 Mechanism in p-Chlorophenol Decomposition. J Zhejiang Univ Sci B. 2005, 6, 553DOI: 10.1631/jzus.2005.B0553.
  • Moonsiri, M.; Rangsunvigit, P.; Chavadej, S.; Gulari, E. Effects of Pt and Ag on the Photocatalytic Degradation of 4-Chlorophenol and Its by-Products. Chem. Eng. J. 2004, 97, 241–248. DOI: 10.1016/j.cej.2003.05.003.
  • Sauleda, R.; Brillas, E. Mineralization of Aniline and 4-Chlorophenol in Acidic Solution by Ozonation Catalyzed with Fe2+ and UVA Light. Appl. Catalysis B: Environ. 2001, 29, 135–145. DOI: 10.1016/S0926-3373(00)00197-1.
  • Hirvonen, A.; Trapido, M.; Hentunen, J.; Tarhanen, J. Formation of Hydroxylated and Dimeric Intermediates during Oxidation of Chlorinated Phenols in Aqueous Solution. Chemosphere 2000, 41, 1211–1218. DOI: 10.1016/S0045-6535(99)00548-2.
  • Li, X.; Cubbage, J. W.; Jenks, W. S. Photocatalytic Degradation of 4-Chlorophenol. 2. The 4-Chlorocatechol Pathway. J. Org. Chem. 1999, 64, 8525–8536. DOI: 10.1021/jo990912n.
  • Xiong, X.; Sun, Y.; Sun, B.; Song, W.; Sun, J.; Gao, N.; Qiao, J.; Guan, X. Enhancement of the Advanced Fenton Process by Weak Magnetic Field for the Degradation of 4-Nitrophenol. RSC Adv. 2015, 5, 13357–13365. DOI: 10.1039/C4RA16318D.
  • Daneshvar, N.; Behnajady, M. A.; Zorriyeh Asghar, Y. Photooxidative Degradation of 4-Nitrophenol (4-NP) in UV/H2O2 Process: Influence of Operational Parameters and Reaction Mechanism. J. Hazard. Mater. 2007, 139, 275–279. DOI: 10.1016/j.jhazmat.2006.06.045.
  • Zhang, W.; Xiao, X.; An, Song, T.; Fu, Z.; Sheng, J.; Cui, G. M. Kinetics, Degradation Pathway and Reaction Mechanism of Advanced Oxidation of 4-Nitrophenol in Water by a UV/H2O2 Process. J. Chem. Technol. Biotechnol. 2003, 78, 788–794. DOI: 10.1002/jctb.864.
  • Oturan, M. A.; Peiroten, J.; Chartrin, P.; Acher, A. J. Complete Destruction of p-Nitrophenol in Aqueous Medium by electro-Fenton Method. Environ. Sci. Technol. 2000, 34, 3474–3479. DOI: 10.1021/es990901b.
  • Chou, M.-S.; Chang, K.-L. Oxidation of Aqueous Dimethyl Sulfoxide (DMSO) Using UV, O3, and UV/O3. Ozone: Sci. Eng. 2007, 29, 391–397. DOI: 10.1080/01919510701573418.
  • Urbano, V. R.; Maniero, M. G.; Pérez-Moya, M.; Guimarães, J. R. Influence of pH and Ozone Dose on Sulfaquinoxaline Ozonation. J. Environ. Manag. 2017, 195, 224–231. DOI: 10.1016/j.jenvman.2016.08.019.
  • van Leeuwen, J. Proposed OS&E Requirement: Measuring Ozone Dosage. Ozone: Sci. Eng. 2015, 37, 191–192. DOI: 10.1080/01919512.2015.1006467.
  • Theurich, J.; Lindner.; Bahnemann, M. D. Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions: A Kinetic and Mechanistic Study. Langmuir: ACS J. Surf. Collo. 1996, 12, 6368–6376. DOI: 10.1021/la960228t.
  • HuangZhang, G.; Xu, S.; Zhu, T. Y. Fluorination of ZnWO4 Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environ. Sci. Technol. 2008, 42, 8516–8521. DOI: 10.1021/es801672a.
  • Oputu, O.; Chowdhury, Nyamayaro, M.; Fatoki, K.; Fester, O. V. Catalytic Activities of Ultra-Small beta-FeOOH Nanorods in Ozonation of 4-Chlorophenol. J. Environ. Sci. 2015, 35, 83–90. DOI: 10.1016/j.jes.2015.02.013.
  • Myilsamy, M.; Mahalakshmi, Subha, M.; Rajabhuvaneswari, N.; Murugesan, A. V. Visible Light Responsive Mesoporous Graphene–Eu2O3/TiO2 Nanocomposites for the Efficient Photocatalytic Degradation of 4-Chlorophenol. RSC Adv. 2016, 6, 35024–35035. DOI: 10.1039/C5RA27541E.
  • Coteiro, R.; De Andrade, D. A. Electrochemical Oxidation of 4-Chlorophenol and Its by-Products Using Ti/Ru0.3M0.7O2 (M = Ti or Sn) Anodes: Preparation Route versus Degradation Efficiency. J. Appl. Electrochem. 2007, 37, 691–698. DOI: 10.1007/s10800-007-9301-9.
  • WangWang, H. J. Electrochemical Degradation of 4-Chlorophenol Using a Novel Pd/C Gas-Diffusion Electrode. Appl. Catalysis B: Environ. 2007, 77, 58–65. DOI: 10.1016/j.apcatb.2007.07.004.
  • PanZhang, W.; Zheng, G.; Wang, T. P. Degradation of p-Nitrophenol Using CuO/Al2O3 as a Fenton-like Catalyst under Microwave Irradiation. RSC Adv. 2015, 5, 27043–27051. DOI: 10.1039/C4RA14516J.
  • Khatamian, M.; Khandar, A. A.; Divband, B.; Haghighi, M.; Ebrahimiasl, S. Heterogeneous Photocatalytic Degradation of 4-Nitrophenol in Aqueous Suspension by Ln (La3+, Nd3+ or Sm3+) Doped ZnO Nanoparticles. J. Mol. Catal. A: Chem. 2012, 365, 120–127. DOI: 10.1016/j.molcata.2012.08.018.
  • Marais, E.; Klein, Antunes, R.; Nyokong, E. T. Photocatalysis of 4-Nitrophenol Using Zinc Phthalocyanine Complexes. J. Mol. Catal. A: Chem. 2007, 261, 36–42. DOI: 10.1016/j.molcata.2006.07.055.
  • Quiroz, M. A.; Reyna, S.; Martínez-Huitle, C. A.; Ferro, S.; De Battisti, A. Electrocatalytic Oxidation of p-Nitrophenol from Aqueous Solutions at Pb/PbO2 Anodes. Appl. Catal. B: Environ. 2005, 59, 259–266. DOI: 10.1016/j.apcatb.2005.02.009.
  • Khavar, A. H. C.; Jafarisani, M. Photocatalytic Degradation of 4-Nitro Phenol in Aqueous Solution by the AgInS2 Nanoparticles Synthesized via Microwave Heating Technique. Internat. J. Health Stud. 2017, http://dx.doi.org/10.22100/ijhs.v3i1.205.
  • Politzer, P.; Abrahmsen.; Sjoberg, L. P. Effects of Amino and Nitro Substituents upon the Electrostatic Potential of an Aromatic Ring. J. Am. Chem. Soc. 1984, 106, 855–860. DOI: 10.1021/ja00316a005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.