Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 3
149
Views
5
CrossRef citations to date
0
Altmetric
Articles

Different bioavailability of phenanthrene to two bacterial species and effects of trehalose lipids on the bioavailability

, , &
Pages 326-332 | Received 29 Aug 2019, Accepted 01 Jan 2020, Published online: 15 Jan 2020

References

  • Lamichhane, S.; Krishna, K. C. B.; Sarukkalige, R. Surfactant-Enhanced Remediation of Polycyclic Aromatic Hydrocarbons: A Review. J. Environ. Manage. 2017, 199, 46–61. DOI: 10.1016/j.jenvman.2017.05.037.
  • Posada-Baquero, R.; Grifoll, M.; Ortega-Calvo, J.-J. Rhamnolipid-Enhanced Solubilization and Biodegradation of PAHs in Soils after Conventional Bioremediation. Sci. Total Environ. 2019, 668, 790–796. DOI: 10.1016/j.scitotenv.2019.03.056.
  • Chai, Y.; Kochetkov, A.; Reible, D. D. Desorption Resistance of Polycyclic Aromatic Hydrocarbons and Duration of Exposure. Environ. Toxicol. Chem. 2006, 25, 2827–2833. DOI: 10.1897/05-750R.1.
  • Lladó, S.; Covino, S.; Solanas, A. M.; Viñas, M.; Petruccioli, M.; D’annibale, A. Comparative Assessment of Bioremediation Approaches to Highly Recalcitrant PAH Degradation in a Real Industrial Polluted Soil. J. Hazard. Mater. 2013, 248249, 407–414. DOI: 10.1016/j.jhazmat.2013.01.020.
  • Shin, K.-H.; Kim, K.-W.; Ahn, Y. Use of Biosurfactant to Remediate Phenanthrene-Contaminated Soil by the Combined Solubilization-Biodegradation Process. J. Hazard. Mater 2006, B137, 1831–1837. DOI: 10.1016/j.jhazmat.2006.05.025.
  • Zhu, H.; Aitken, M. D. Surfactant-Enhanced Desorption and Biodegradation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil. Environ. Sci. Technol. 2010, 44, 7260–7265. DOI: 10.1021/es100112a.
  • Laor, Y.; Strom, P. F.; Farmer, W. J. Bioavailability of Phenanthrene Sorbed to Mineral-Associated Humic Acid. Water Res. 1999, 33, 1719–1729. DOI: 10.1016/S0043-1354(98)00378-9.
  • Poeton, T. S.; Stensel, H. D.; Strand, S. E. Biodegradation of Polyaromatic Hydrocarbons by Marine Bacteria: Effect of Solid Phase on Degradation Kinetics. Water Res. 1999, 33, 868–880. DOI: 10.1016/S0043-1354(98)00232-2.
  • Seo, Y.; Bishop, P. L. Influence of Nonionic Surfactant on Attached Biofilm Formation and Phenanthrene Bioavailability during Simulated Surfactant Enhanced Bioremediation. Environ. Sci. Technol. 2007, 41, 7107–7113. DOI: 10.1021/es0701154.
  • Crocker, F. H.; Guerin, W. F.; Boyd, S. A. Bioavailability of Naphthalene Sorbed to Cationic Surfactant-Modified Smectite Clay. Environ. Sci. Technol. 1995, 29, 2953–2958. DOI: 10.1021/es00012a010.
  • Guerin, W. F.; Boyd, S. A. Differential Bioavailability of Soil-Sorbed Naphthalene to Two Bacterial Species. Appl. Environ. Microb. 1992, 58, 1142–1152. DOI: 10.1128/AEM.58.4.1142-1152.1992.
  • Guerin, W. F.; Boyd, S. A. Bioavailability of Naphthalene Associated with Natural and Synthetic Sorbents. Water Res. 1997, 31, 1504–1512. DOI: 10.1016/S0043-1354(96)00402-2.
  • Johnson, A. R.; Karson, U. Evaluation of Bacterial Strategies to Promote the Bioavailability of Polycyclic Aromatic Hydrocarbons. Appl. Microbiol. Biotechnol. 2004, 63, 452–459. DOI: 10.1007/s00253-003-1265-z.
  • Dean, S. M.; Jin, Y.; Cha, D. K.; Wilson, S. V.; Radosevich, M. Phenanthrene Degradation in Soils Co-Inoculated with Phenanthrene-Degrading and Biosurfactant-Producing Bacteria. J. Environ. Qual. 2001, 30, 1126–1133. DOI: 10.2134/jeq2001.3041126x.
  • Chen, K.; Zhu, Q.; Qian, Y.; Song, Y.; Yao, J.; Choi, M. M. F. Microcalorimetric Investigation of the Effect of Non-Ionic Surfactant on Biodegradation of Pyrene by PAH-Degrading Bacteria Burkholderia cepacia. Ecotoxicol. Environ. Saf. 2013, 98, 361–367. DOI: 10.1016/j.ecoenv.2013.08.012.
  • Ghosh, I.; Mukherji, S. Diverse Effect of Surfactants on Pyrene Biodegradation by a Pseudomonas Strain Utilizing Pyrene by Cell Surface Hydrophobicity Induction. Int. Biodeterior. Biodegrad. 2016, 108, 67–75. DOI: 10.1016/j.ibiod.2015.12.010.
  • Pantsyrnaya, T.; Delaunay, S.; Goergen, J. L.; Guseva, E.; Boudrant, J. Solubilization of Phenanthrene above Cloud Point of Brij 30: A New Application in Biodegradation. Chemosphere 2013, 92, 192–195. DOI: 10.1016/j.chemosphere.2013.03.025.
  • Rodrigues, A.; Nogueira, R.; Melo, L. F.; Brito, A. G. Effect of Low Concentrations of Synthetic Surfactants on Polycyclic Aromatic Hydrocarbons (PAH) Biodegradation. Int. Biodeterior. Biodegrad. 2013, 83, 48–55. DOI: 10.1016/j.ibiod.2013.04.001.
  • Pei, X. H.; Zhan, X. H.; Wang, S. M.; Lin, Y. S.; Zhou, L. X. Effects of a Biosurfactant and a Synthetic Surfactant on Phenanthrene Degradation by a Sphingomonas Strain. Pedosphere 2010, 20, 771–779. DOI: 10.1016/S1002-0160(10)60067-7.
  • Allen, C. C. R.; Boyd, D. R.; Hempenstall, F.; Larkin, M. J.; Sharma, N. D. Contrasting Effects of a Nonionic Surfactant on the Biotransformation of Polycyclic Aromatic Hydrocarbons to Cis-Dihydrodiols by Soil Bacteria. Appl. Environ. Microb. 1999, 65, 1335–1339. DOI: 10.1128/AEM.65.3.1335-1339.1999.
  • Stelmack, P. L.; Gray, M. R.; Pickard, M. A. Bacterial Adhesion to Soil Contaminants in the Presence of Surfactants. Appl. Environ. Microbiol. 1999, 65, 163–168.
  • Margaritis, A.; Kennedy, K.; Zajic, J. E.; Gerson, D. F. Biosurfactant Production by Nocardia Erythropolis. Dev. Ind. Microbiol. 1979, 20, 623–630.
  • Park, A. J.; Cha, D. K.; Holsen, T. M. Enhancing Solubilization of Sparingly Soluble Organic Compounds by Biosurfactants Produced by Nocardia Erythropolis. Water Enviro. Res. 1998, 70, 351–355. DOI: 10.2175/106143098X124984.
  • Chang, J. S.; Cha, D. K.; Radosevich, M.; Jin, Y. Enhancement of Phenanthrene Solubilization and Biodegradation by Trehalose Lipid Biosurfactants. Environ. Toxicol. Chem. 2004, 23, 2816–2822. DOI: 10.1897/03-608.1.
  • Hatzinger, P. B.; Alexander, M. Effect of Aging of Chemicals in Soil on Their Biodegradability and Extractability. Environ. Sci. Technol. 1995, 29, 537–545. DOI: 10.1021/es00002a033.
  • Zhang, Y.; Miller, R. M. Effect of a Pseudomonas Rhamonolipid Biosurfactant on Cell Hydrophobicity and Biodegradation of Octadecane. Appl. Environ. Microb. 1994, 60, 2101–2106. DOI: 10.1128/AEM.60.6.2101-2106.1994.
  • Guerin, W. F.; Boyd, S. A. Differential Bioavailability of Soil-Sorbed Naphthalene to Two Bacterial Species. Appl. Environ. Microbiol. 1992, 58, 1142–1152. DOI: 10.1128/AEM.58.4.1142-1152.1992.
  • Chang, J. S.; Cha, D. K.; Radosevich, M.; Jin, Y. Effects of Biosurfactant-Producing Bacteria on Biodegradation and Transport of Phenanthrene in Subsurface Soil. J. Environ. Sci. Heal. A 2015, 50, 611–616. DOI: 10.1080/10934529.2015.994967.
  • Congiu, E.; Parsons, J. R.; Ortega-Calvo, J.-J. Dual Partitioning and Attachment Effects of Rhamnolipid on Pyrene Biodegradation under Bioavailability Restrictions. Environ. Pollut. 2015, 205, 378–384. DOI: 10.1016/j.envpol.2015.07.013.
  • Rodrigues, A. C.; Wuertz, S.; Brito, A. G.; Melo, L. F. Fluorene and Phenanthene Uptake by Psedomonas Putida ATCC 17514: Kinetics and Physiological Aspects. Biotechnol. Bioeng. 2005, 90, 281–289. DOI: 10.1002/bit.20377.
  • Zhao, Z.; Selvam, A.; Wong, J. W.-C. Effects of Rhamnolipids on Cell Surface Hydrophobicity of PAH Degrading Bacteria and the Biodegradation of Phenanthrene. Bioresource Technol. 2011, 102, 3999–4007. DOI: 10.1016/j.biortech.2010.11.088.
  • Li, F.; Zhu, L. Effect of Surfactant-Induced Cell Surface Modifications on Electron Transport System and Catechol 1, 2-Dioxygenase Activities and Phenanthrene Biodegradation by Citrobacter sp. SA01. Bioresour. Technol. 2012, 123, 42–48. DOI: 10.1016/j.biortech.2012.07.059.
  • Zhang, D.; Zhu, L.; Li, F. Influences and Mechanisms of Surfactants on Pyrene Biodegradation Based on Interactions of Surfactant with a Klebsiella oxytoca Strain. Bioresour. Technol. 2013, 142, 454–461. DOI: 10.1016/j.biortech.2013.05.077.
  • Jahan, K.; Ahmed, T.; Maier, W. J. Factors Affecting the Nonionic Surfactant-Enhanced Biodegradation of Phenanthrene. Water Environ. Res. 1997, 69, 317–325. DOI: 10.2175/106143097X125515.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.