Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 7
218
Views
10
CrossRef citations to date
0
Altmetric
Articles

A new voltammetric sensor and its application in pharmaceutical analysis for rutin

, , , &
Pages 837-846 | Received 26 Sep 2019, Accepted 21 Mar 2020, Published online: 07 Apr 2020

References

  • Song, K.; Kim, S.; Na, J. Y.; Park, J. H.; Kim, J. K.; Kim, J. H.; Kwon, J. Rutin Attenuates Ethanol-Induced Neurotoxicity in Hippocampal Neuronal Cells by Increasing Aldehyde Dehydrogenase 2. Food Chem. Toxicol. 2014, 72, 228–233. DOI: 10.1016/j.fct.2014.07.028.
  • Jeszka-Skowron, M.; Krawczyk, M.; Zgoła-Grześkowiak, A. Determination of Antioxidant Activity, Rutin, Quercetin, Phenolic Acids and Trace Elements in Tea Infusions: Influence of Citric Acid Addition on Extraction of Metals. J. Food Compos. Anal. 2015, 40, 70–77. DOI: 10.1016/j.jfca.2014.12.015.
  • Yang, L. T.; Yang, J.; Xu, B. J.; Zhao, F. Q.; Zeng, B. Z. Facile Preparation of Molecularly Imprinted Polypyrrole-Graphenemultiwalled Carbon Nanotubes Composite Film Modified Electrode for Rutin Sensing. Talanta 2016, 161, 413–418. DOI: 10.1016/j.talanta.2016.08.080.
  • Miao, D. D.; Li, J. J.; Yang, R.; Qu, J. J.; Qu, L. B.; Harrington, P. B. Supersensitive Electrochemical Sensor for the Fast Determination of Rutin in Pharmaceuticals and Biological Samples Based on Poly(Diallyldimethylammonium Chloride)-Functionalized Graphene. J. Electroanal. Chem. 2014, 732, 17–24. DOI: 10.1016/j.jelechem.2014.08.018.
  • Ran, X.; Yang, L.; Zhang, J. Q.; Deng, G. G.; Li, Y. C.; Xie, X. G.; Zhao, H.; Li, C. P. Highly Sensitive Electrochemical Sensor Based on β-Cyclodextrinegold@3, 4, 9, 10-Perylene Tetracarboxylic Acid Functionalized Single-Walled Carbon Nanohorns for Simultaneous Determination of Myricetin and Rutin. Anal. Chim. Acta 2015, 892, 85–94. DOI: 10.1016/j.aca.2015.08.046.
  • Wu, H. W.; Chen, M. L.; Fan, Y. C.; Elsebaei, F.; Zhu, Y. Determination of Rutin and Quercetin in Chinese Herbal Medicine by Ionic Liquid-Based Pressurized Liquid Extraction-Liquid Chromatography-Chemiluminescence Detection. Talanta 2012, 88, 222–229. DOI: 10.1016/j.talanta.2011.10.036.
  • Sun, Y. S.; Li, W.; Wang, J. H.; Bi, J. J.; Su, S. D. Determination of Rutin in Cigarette Tobacco, Filters, Mainstream Smoke and Burned Ash of Different Branded Cigarettes by High Performance Liquid Chromatography. Molecules 2012, 17, 3751–3760. DOI: 10.3390/molecules17043751.
  • Li, S.; Zhang, L.; Chen, L.; Zhong, Y.; Ni, Y. Determination of Rutin by Chemiluminescence Based on a Luminol-Potassium periodate-ZnSe System. Anal. Methods 2016, 8, 4056–4063. DOI: 10.1039/C6AY00301J.
  • Al-Taweel, A. M.; Abdel-Kader, M. S.; Fawzy, G. A.; Perveen, S.; Maher, H. M.; Al-Zoman, N. Z.; Al-Shehri, M. M.; Al-Johar, H.; Al-Showiman, H. Isolation of Flavonoids from Delonix Elata and Determination of Its Rutin Content Using Capillary Electrophoresis. J. Pharm. Sci. 2015, 28, 1897–1903.
  • Wang, Z. H.; Yao, S. Y.; Xia, J. F.; Zhang, F. F.; Guo, X. M.; Xia, Y. Z.; Li, Y. H. Self-Assembled Hybrid Films of Graphene/Carbon Nanotube Modified Electrode for Sensitive and Selective Determination of Rutin. AMR 2012, 531, 419–422. DOI: 10.4028/www.scientific.net/AMR.531.419.
  • Liu, M. L.; Deng, J. H.; Chen, Q.; Huang, Y.; Wang, L. P.; Zhao, Y.; Zhang, Y. Y.; Li, H. T.; Yao, S. Z. Sensitive Detection of Rutin with Novel Ferrocene Benzyne Derivative Modified Electrodes. Biosens. Bioelectron. 2013, 41, 275–281. DOI: 10.1016/j.bios.2012.08.040.
  • Sun, N.; Xia, J. F.; Wang, Z. H.; Xia, Y. Z.; Zhang, F. F.; Xia, L. H. Ultrasensitive Determination of Rutin on Ag NanoparticlesPoly(p-Aminobenzene Sulfonic Acid)/Graphene Modified Glassy Carbon Electrode. AMR 2013, 709, 45–48. DOI: 10.4028/www.scientific.net/AMR.709.45.
  • Yang, S. L.; Qu, L. B.; Li, G.; Yang, R.; Liu, C. C. Gold Nanoparticles/Ethylenediamine/Carbon Nanotube Modified Glassy Carbon Electrode as the Voltammetric Sensor for Selective Determination of Rutin in the Presence of Ascorbic Acid. J. Electroanal. Chem. 2010, 645, 115–122. DOI: 10.1016/j.jelechem.2010.04.019.
  • Zhu, Z. H.; Sun, X. Y.; Zhuang, X. M.; Zeng, Y.; Sun, W.; Huang, X. T. Single-Walled Carbon Nanotubes Modified Carbon Ionic Liquid Electrode for Sensitive Electrochemical Detection of Rutin. Thin Solid Films 2010, 519, 928–933. DOI: 10.1016/j.tsf.2010.09.013.
  • Pang, P. F.; Li, H. Z.; Liu, Y. P.; Zhang, Y. L.; Feng, L. L.; Wang, H. B.; Wu, Z.; Yang, W. R. One-Pot Facile Synthesis of Platinum Nanoparticle Decorated Reduced Graphene Oxide Composites and Their Application in Electrochemical Detection of Rutin. Anal. Methods 2015, 7, 3581–3586. DOI: 10.1039/C5AY00353A.
  • Zhu, X. H.; Jiao, Q. F.; Zuo, X. X.; Xiao, X.; Liang, Y.; Nan, J. M. An Electrochemical Sensor Based on Carbon Nano-Fragments and β-Cyclodextrin Composite-Modified Glassy Carbon Electrode for the Determination of Rutin. J. Electrochem. Soc. 2013, 160, H699–H703. DOI: 10.1149/2.038310jes.
  • Qiao, J.; Zhang, Y.; Lei, S.; Liu, Z.; Li, G.; Ye, B. Sensitive Determination of Baicalein Based on Functionalized Graphene Loaded RuO2 Nanoparticles Modified Glassy Carbon Electrode. Talanta 2018, 188, 714–721. DOI: 10.1016/j.talanta.2018.06.047.
  • Li, S.; Duan, Y. H.; Lei, S.; Qiao, J. T.; Li, G. P.; Ye, B. X. A New Electrochemical Sensing Strategy for Echinacoside Based on an Original Nanocomposite. Sens. Actuators B 2018, 274, 218–227. DOI: 10.1016/j.snb.2018.07.123.
  • Gao, Y. D.; Xie, Z. K.; Zhang, Y. L.; Zou, L. N.; Ye, B. X. A Simple and Sensitive Voltammetric Method for the Determination of Orange II Based on a Functionalized Graphene-Modified Electrode. J. AOAC Int. 2016, 99, 1287–1294. DOI: 10.5740/jaoacint.16-0138.
  • Wu, Y. J.; Wang, F.; Lu, K.; Lv, M. X.; Zhao, Y. F. Self-Assembled Dipeptide-Graphene Nanostructures onto an Electrode Surface for Highly Sensitive Amperometric Hydrogen Peroxide Biosensors. Sens. Actuators B 2017, 244, 1022–1030. DOI: 10.1016/j.snb.2017.01.048.
  • Wu, Y. J.; Zhou, A. X.; Yang, H. M.; Wang, F.; Lu, K. 3D Graphene-Nitrogen Doped Carbon Nanotubes Network Modified Electrode as Sensing Materials for the Determination of Urapidil. Materials 2018, 11, 322–326.
  • Yin, Y.; Pang, J.; Wang, J.; Lu, X.; Hao, Q.; Saei Ghareh Naz, E.; Zhou, X.; Ma, L.; Schmidt, O. G. Graphene-Activated Optoplasmonic Nanomembrane Cavities for Photodegradation Detection. ACS Appl. Mater. Interfaces 2019, 11, 15891–15897. DOI: 10.1021/acsami.9b00733.
  • Wang, J. L.; Gao, X. L.; Wang, J.; Wei, Y.; Li, Z. K.; Gao, C. J. O-(Carboxymethyl)-Chitosan Nanofiltration Membrane Surface Functionalized with Graphene Oxide Nanosheets for Enhanced Desalting Properties. ACS Appl. Mater. Interfaces 2015, 7, 4381–4389.
  • Chen, S.; Bao, L.; Ou, E. C.; Peng, C.; Wang, W. M.; Xu, W. J. A Cationic Azobenzene-Surfactant-Modified Graphene Hybrid: Unique Photoresponse and Electrochemical Behavior. Nanoscale 2015, 7, 19673–19686. DOI: 10.1039/C5NR04646G.
  • Liu, Y.; Zhong, Q.; Zhang, T. Preparation of Cationic Surfactant Intercalated Graphene Oxide and Quantitative Determination of the Interlamellar Spacing. Fullerene Sci. Technol. 2015, 23, 7–13.
  • You, H.; Mu, Z.; Zhao, M. Voltammetric Aptasensor for Sulfadimethoxine Using a Nanohybrid Composed of Multifunctional Fullerene, Reduced Graphene Oxide and Pt@Au Nanoparticles, and Based on Direct Electron Transfer to the Active Site of Glucose Oxidase. Microchim. Acta 2019, 186, 1–6.
  • Mahajan, A.; Banik, S.; Majumdar, D.; Bhattacharya, S. K. Anodic Oxidation of Butan-1-ol on Reduced Graphene Oxide-Supported Pd-Ag Nanoalloy for Fuel Cell Application. ACS Omega 2019, 4, 4658–4670. DOI: 10.1021/acsomega.8b03561.
  • Li, J.; Zhong, L.; Tong, L.; Yu, Y.; Liu, Q.; Zhang, S.; Yin, C.; Qiao, L.; Li, S.; Si, R.; Zhang, J. Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423–1905459. DOI: 10.1002/adfm.201905423.
  • Gao, Y. D.; Wang, L.; Zhang, Y. L.; Zou, L. N.; Li, G. P.; Ye, B. X. Electrochemical Behavior of Amaranth and Its Sensitive Determination Based on Pd-Doped Polyelectrolyte Functionalized Graphene Modified Electrode. Talanta 2017, 168, 146–151. DOI: 10.1016/j.talanta.2017.03.035.
  • Moradi, O.; Gupta, V. K.; Agarwal, S.; Tyagi, I.; Asif, M.; Makhlouf, A. S. H.; Sadegh, H.; Ghoshekandi, R. S. Characteristics and Electrical Conductivity of Graphene and Graphene Oxide for Adsorption of Cationic Dyes from Liquids: Kinetic and Thermodynamic Study. J. Ind. Eng. Chem. 2015, 28, 294–301. DOI: 10.1016/j.jiec.2015.03.005.
  • Khan, I.; Pandit, U. J.; Wankar, S.; Limaye, S. N. Centrifugation Assisted Digestion for Simultaneous Voltammetric Determination of Ultra Trace Metal Ions in Water and Milk Samples. Environ. Nanotechnol. Monit. Manage. 2017, 7, 64–72. DOI: 10.1016/j.enmm.2017.01.001.
  • Khan, I.; Bano, M.; Khan, G. A.; Khan, F. Design of functionalized-ZnNP Decorated fMWCNT-IL Composite CPE: An Ideal Electrode Material for Enhanced Electrocatalytic Determination of Pymetrozine. Mater. Sci. Eng. B 2018, 238-239, 83–92. DOI: 10.1016/j.mseb.2018.12.018.
  • Gao, Y. D.; Li, H. M.; Wang, L.; Gao, Y. D.; Ye, B. X. A Simple Method for Determination of Urapidil at a Glassy Carbon Electrode Modified with Poly(Sodium4-Styrenesulfonate) Functionalized Graphene. Int. J. Environ. Anal. Chem. 2019, 99, 1471–1483. DOI: 10.1080/03067319.2019.1628951.
  • Gao, Y. D.; Wang, L.; Zhang, Y. L.; Li, S.; Zou, L. N.; Ye, B. X. Greenly Synthesized Graphene with L-Glutathionemodified Electrode and Its Application towards Determination of Rutin. RSC Adv. 2016, 6, 94024–94032. DOI: 10.1039/C6RA13457B.
  • Er, E.; Çelikkan, H.; Erk, N.; Aksu, M. L. A New Generation Electrochemical Sensor Based on Graphene Nanosheets/Gold Nanoparticles/Nafion Nanocomposite for Determination of Silodosin. Electrochim. Acta 2015, 157, 252–257. DOI: 10.1016/j.electacta.2015.01.020.
  • Ye, X. L.; Du, Y. L.; Lu, D. B.; Wang, C. M. Fabrication of β-Cyclodextrin-Coated Poly (Diallyldimethylammonium Chloride)-Functionalized Graphene Composite Film Modified Glassy Carbon-Rotating Disk Electrode and Its Application for Simultaneous Electrochemical Determination Colorants of Sunset Yellow and Tartrazine. Anal. Chim. Acta 2013, 779, 22–34. DOI: 10.1016/j.aca.2013.03.061.
  • Yu, L. L.; Shi, M. X.; Yue, X.; Qu, L. B. A Novel and Sensitive Hexadecyltrimethyl Ammonium Bromide Functionalized Graphene Supported Platinum Nanoparticles Composite Modified Glassy Carbon Electrode for Determination of Sunset Yellow in Soft Drinks. Sens. Actuators B 2015, 209, 1–8. DOI: 10.1016/j.snb.2014.10.098.
  • Zheng, Y. H.; Wang, A. W.; Lin, H. T.; Fu, L.; Cai, W. A Sensitive Electrochemical Sensor for Direct Phoxim Detection Based on an Electrodeposited Reduced Graphene Oxide-Gold Nanocomposite. RSC Adv. 2015, 5, 15425–15430. DOI: 10.1039/C4RA15872E.
  • Sreedhala, S.; Sudheeshkumar, V.; Vinod, C. P. Structure Sensitive Chemical Reactivity by Palladium Concave Nanocubes and Nanoflowers Synthesised by a Seed Mediated Procedure in Aqueous Medium. Nanoscale 2014, 6, 7496–7502.
  • Qiao, W. H.; Li, Y. F.; Wang, L.; Li, G. P.; Li, J. J.; Ye, B. X. Electrochemical Behavior of Daphnetin and Its Sensitive Determination Based on Electrochemically Reduced Graphene Oxide Modified Electrode. J. Electroanal. Chem. 2015, 749, 68–74. DOI: 10.1016/j.jelechem.2015.04.036.
  • Laviron, E. General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. J. Electroanal. Chem. 1979, 101, 19–28. DOI: 10.1016/S0022-0728(79)80075-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.