Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 9
352
Views
5
CrossRef citations to date
0
Altmetric
Articles

Modeling of adsorption flux in nickel-contaminated synthetic simulated wastewater in the batch reactor

ORCID Icon &
Pages 1059-1069 | Received 17 Feb 2020, Accepted 06 May 2020, Published online: 12 Jun 2020

References

  • LATSDR, ATSDR’s Substance Priority List. GA: Agency for Toxic Substances and Disease Registry; Atlanta; 2017.
  • About nickel. Nickel Institute. 2018
  • https://www.nickelinstitute.org/about-nickel/#properties. (accessed 12.23.2018).
  • Cempel, M.; Nikel, G. Nickel: A Review of Its Sources and Environmental Toxicology. Pol. J. Environ. Stud 2006, 15, 375–382.
  • Dhokpande, S. R.; Sant Gadge Baba Amravati University; Kaware, J. P.; Kulkarni, S. J. Research for Removal of Nickel from Wastewater–a Review. Ijcer. 2017, 4, 1–4. DOI: 10.14445/23945370/IJCER-V4I2P101.
  • WHO. Nickel in Drinking-Water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality.; Geneva, World Health Organization 2005.
  • USEPA. 2018 Edition of the Drinking Water Standards and Health Advisories. Office of Water, U.S. Environmental Protection Agency; Washington, DC; March, 2018; 1–20.
  • List of IARC Group 1 carcinogens. https://en.wikipedia.org/wiki/List_of_IARC_Group_1_carcinogens. (accessed 12.10.2018).
  • Duda-Chodak, A. D. A.; Błaszczyk, U. The Impact of Nickel on Human Health. J. Elem 2008, 13, 685–696.
  • Buxton, S.; Garman, E.; Heim, K. E.; Lyons-Darden, T.; Schlekat, C. E.; Taylor, M. D.; Oller, A. R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. DOI: 10.3390/inorganics7070089.
  • Berg, T.; Petersen, A.; Pedersen, G. A.; Petersen, J.; Madsen, C. The Release of Nickel and Other Trace Elements from Electric Kettles and Coffee Machines. Food Addit. Contam. 2000, 17, 189–196. DOI: 10.1080/026520300283441.
  • Nielsen, G. D.; Soderberg, U.; Jorgensen, P. J.; Templeton, D. M.; Rasmussen, S. N.; Andersen, K. E.; Grandjean, P. Absorption and Retention of Nickel from Drinking Water in Relation to Food Intake and Nickel Sensitivity. Toxicol. Appl. Pharm 1999, 154, 67–75. DOI: 10.1006/taap.1998.8577.
  • Sunderman, F. W.; Jr., Hopfer, S. M.; Sweeney, K. R.; Marcus, A. H.; Most, B. M.; Creason, J. Nickel Absorption and Kinetics in Human Volunteers. Proc. Soc. Exp. Biol. Med. 1989, 191, 5–11. DOI: 10.3181/00379727-191-42881.
  • Peng, G.; Deng, S.; Liu, F.; Li, T.; Yu, G. Superhigh Adsorption of Nickel from Electroplating Wastewater by Raw and Calcined Electroplating Sludge Waste. J. Clean. Prod 2020, 246, 118948. DOI: 10.1016/j.jclepro.2019.118948.
  • Al-Saydeh, S. A.; El-Naas, M. H.; Zaidi, S. J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem 2017, 56, 35–44. DOI: 10.1016/j.jiec.2017.07.026.
  • Singh, A.; Sonal, S.; Kumar, R.; Mishra, B. K.; Singh, A.; Sonal, S.; Kumar, R.; Mishra, B. K. Adsorption of Chlorhexidine Digluconate on Acid Modified Fly Ash: Kinetics, Isotherms and Influencing Factors. Environ. Eng. Res 2019, 25, 205–211. DOI: 10.4491/eer.2018.412.
  • Gonzalez-Pradas, E.; Villafranca-Sanchez, M.; Socías-Viciana, M.; Cantos-Molina, A.; Ureña-Amate, M. D. Removal of Chloridazon from Water by Kerolite/Stevensite and Bentonite: A Comparative Study. J. Chem. Technol. Biotechnol. 2000, 75, 1135–1140. DOI: 10.1002/1097-4660(200012)75:12<1135::AID-JCTB333>3.0.CO;2-V.
  • Wilson, J.; Bond, A.; Savage, D.; Watson, S.; Pusch, R.; Bennett, D. Bentonite: A Review of Key Properties, Processes and Issues for Consideration in the UK Context. NDA RWMD, 2011.
  • Alexander, J. A.; Ahmad Zaini, M. A.; Surajudeen, A.; Aliyu, E.-N. U.; Omeiza, A. U. Surface Modification of Low-Cost Bentonite Adsorbents—a Review. Particul. Sci. Technol 2019, 37, 534–545.
  • Srinivasan, R. Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water. Adv. Mater. Sci. Eng 2011, 2011, 1–17. DOI: 10.1155/2011/872531.
  • Moosavi, M. Bentonite Clay as a Natural Remedy: A Brief Review. Iran. J. Public Health 2017, 46, 1176–1183.
  • Na, P.; Jia, X.; Yuan, B.; Li, Y.; Na, J.; Chen, Y.; Wang, L. Arsenic Adsorption on Ti-Pillared Montmorillonite. J. Chem. Technol. Biotechnol. 2010, 85, 708–714. DOI: 10.1002/jctb.2360.
  • Vieira, M. G. A.; de Almeida Neto, A. F.; Gimenes, M. L.; da Silva, M. G. C. Capacity Assessment and Potential for Reuse of Calcined Bofe Bentonitic Clay for Adsorption of Nickel. Can. J. Chem. Eng. 2016, 94, 1457–1465. DOI: 10.1002/cjce.22528.
  • Taha, A. A.; Shreadah, M. A.; Heiba, H. F.; Ahmed, A. M. Validity of Egyptian Na-Montmorillonite for Adsorption of Pb2+, Cd2+ and Ni2+ under Acidic Conditions: Characterization, Isotherm, Kinetics, Thermodynamics and Application Study. Asia-Pac. J. Chem. Eng. 2017, 12, 292–306. DOI: 10.1002/apj.2072.
  • Kumar, D. 6 Incredible Benefits of Bentonite Clay, the Volcanic Ash. NDTV Food; 23 February 2017.
  • Moorlock, B. S. P.; Highley, D. E. Fuller’s Earth. British Geological Survey Technical Report; 87, In WA, 2006.
  • Nash, T. Overview of Mine Drainage Geochemistry at Historical Mines, Humboldt River Basin and Adjacent Mining Areas, Nevada. In Geoenvironmental Investigations of the Humboldt River Basin, Northern Nevada, US Department of the Interior, US Geological Survey, 2003.
  • Wadley, L. Y. N. Post-Depositional Heating May Cause over-Representation of Red-Coloured Ochre in Stone Age Sites. S. Afr. Archaeol. Bull 2009, 64, 166–171.
  • Wreschner, E. E.; Bolton, R.; Butzer, K. W.; Delporte, H.; Häusler, A.; Heinrich, A.; Jacobson-Widding, A.; Malinowski, T.; Masset, C.; Miller, S. F.; et al. Red Ochre and Human Evolution: A Case for Discussion. Curr. Anthropol 1980, 21, 631–644. DOI: 10.1086/202541.
  • Wolf, S.; Conard Nicholas, J.; Floss, H.; Dapschauskas, R.; Velliky, E.; Kandel Andrew, W. The Use of Ochre and Painting during the Upper Paleolithic of the Swabian Jura in the Context of the Development of Ochre Use in Africa and Europe. In Open Archaeology 2018, 4, 185–205. DOI: 10.1515/opar-2018-0012.
  • Rosso, D. E.; Pitarch Marti, A.; D’Errico, F. Middle Stone Age Ochre Processing and Behavioural Complexity in the Horn of Africa: Evidence from Porc-Epic Cave, Dire Dawa, Ethiopia. PloS One. 2016, 11, e0164793. DOI: 10.1371/journal.pone.0164793.
  • Velliky, E. C.; Porr, M.; Conard, N. J. Ochre and Pigment Use at Hohle Fels Cave: Results of the First Systematic Review of Ochre and Ochre-Related Artefacts from the Upper Palaeolithic in Germany. PloS One. 2018, 13, e0209874DOI: 10.1371/journal.pone.0209874.
  • Liu, J.; Xie, Y.; Li, C.; Fang, G.; Chen, Q.; Ao, X. Novel Red Mud/Polyacrylic Composites Synthesized from Red Mud and Its Performance on Cadmium Removal from Aqueous Solution. J. Chem. Technol. Biotechnol. 2020, 95, 213–222. DOI: 10.1002/jctb.6223.
  • Rahman, P. K. S. M.; Bastola, S. Biological Reduction of Iron to the Elemental State from Ochre Deposits of Skelton Beck in Northeast England. Front. Environ. Sci 2014, 2, 1–8. DOI: 10.3389/fenvs.2014.00022.
  • Skaug, M. J.; Mabry, J.; Schwartz, D. K. Intermittent Molecular Hopping at the Solid-Liquid Interface. Phys. Rev. Lett. 2013, 110, 256101. DOI: 10.1103/PhysRevLett.110.256101.
  • Tian, X.; Zheng, H.; Mirsaidov, U. Aggregation Dynamics of Nanoparticles at solid-liquid interfaces. Nanoscale 2017, 9, 10044–10050. DOI: 10.1039/C7NR01985H.
  • Rahn, B.; Wen, R.; Deuchler, L.; Stremme, J.; Franke, A.; Pehlke, E.; Magnussen, O. M. Coadsorbate-Induced Reversal of Solid-Liquid Interface Dynamics. Angew. Chem. Int. Ed. Engl. 2018, 57, 6065–6068. DOI: 10.1002/anie.201712728.
  • Chang, C. H.; Franses, E. I. Adsorption Dynamics of Surfactants at the Air/Water Interface: A Critical Review of Mathematical Models, Data, and Mechanisms. Colloids Surf. A Physicochem. Eng. Asp 1995, 100, 1–45. DOI: 10.1016/0927-7757(94)03061-4.
  • Bertoncello, P.; Kefalas, E. T.; Pikramenou, Z.; Unwin, P. R.; Forster, R. J. Adsorption Dynamics and Electrochemical and Photophysical Properties of Thiolated Ruthenium 2,2’-Bipyridine Monolayers. J. Phys. Chem. B 2006, 110, 10063–10069. DOI: 10.1021/jp057276j.
  • Wang, J.; Wang, Y.; Huang, X.; Yuan, Y. L.; Chen, R. H.; Zhou, H.; Zhou, D. D. Adsorption Dynamics and Breakthrough Characteristics Based on the Fluidization Condition. Huan Jing Ke Xue. 2014, 35, 678–683.
  • Chong, G.; Hernandez, R. Adsorption Dynamics and Structure of Polycations on Citrate-Coated Gold Nanoparticles. J. Phys. Chem. C 2018, 122, 19962–19969. DOI: 10.1021/acs.jpcc.8b05202.
  • Hua, X.; Frechette, J.; Bevan, M. A. Nanoparticle Adsorption Dynamics at Fluid Interfaces. Soft Matter 2018, 14, 3818–3828. DOI: 10.1039/C8SM00273H.
  • Shrestha, D.; Gyawali, G.; Rajbhandari, A. Preparation and Characterization of Activated Carbon from Waste Sawdust from Saw Mill. J. Inst. Sci. Tech. 2018, 22, 103–108. DOI: 10.3126/jist.v22i2.19600.
  • Kibami, D.; Chubaakum, P.; Rao, K.; Dipak, S. Preparation and Characterization of Activated Carbon from Fagopyrum Esculentum Moench by HNO3 and H3PO4 Chemical Activation. Der Chemica Sinica 2014, 5, 46–55.
  • Singh, K. N.; Singh, S. N.; Ojha, G. S. Determination of Nickel from Water Samples. Curr. World Environ. 2008, 3, 181–184. DOI: 10.12944/CWE.3.1.28.
  • Imaga, C. C.; Abia, A. A. Adsorption Kinetics and Mechanisms of Ni2+ Sorption Using Carbonized and Modified Sorghum (Sorghum Bicolor) Hull of Two Pore Sizes (150 μm and 250 μm): a Comparative Study. Int. J. Chem. Stud 2015, 2, 59–68.
  • Zhu, W.; Liu, J.; Li, M. Fundamental Studies of Novel Zwitterionic Hybrid Membranes: Kinetic Model and Mechanism Insights into Strontium Removal. ScientificWorld J 2014, 2014, 1–7. DOI: 10.1155/2014/485820.
  • Borwankar, R. P.; Wasan, D. T. Equilibrium and Dynamics of Adsorption of Surfactants at Fluid-Fluid Interfaces. Chem. Eng. Sci 1988, 43, 1323–1337. DOI: 10.1016/0009-2509(88)85106-6.
  • Ferri, J. K.; Lin, S. Y.; Stebe, K. J. Curvature Effects in the Analysis of Pendant Bubble Data: Comparison of Numerical Solutions, Asymptotic Arguments, and Data. J. Colloid Interface Sci. 2001, 241, 154–168. DOI: 10.1006/jcis.2001.7737.
  • Joos, P.; Serrien, G. Adsorption Kinetics of Lower Alkanols at the Air/Water Interface: Effect of Structure Makers and Structure Breakers. J. Colloid Interface Sci 1989, 127, 97–103. DOI: 10.1016/0021-9797(89)90010-6.
  • Naswir, M.; Arita, S.; Marsi, S. Characterization of Bentonite by XRD and SEM-EDS and Use to Increase pH and Color Removal, Fe and Organic Substances in Peat Water. J. Clean Energy Technol 2013, 1, 313–317.
  • Zheng, R.; Gao, H.; Ren, Z.; Cen, D.; Chen, Z. Preparation of Activated Bentonite and Its Adsorption Behavior on Oil-Soluble Green Pigment. Physicochem. Probl. MI 2017, 53, 829–845.
  • Ngoh, Y.; Nawi, M. Role of Bentonite Adsorbent Sub-Layer in the Photocatalytic-Adsorptive Removal of Methylene Blue by the Immobilized TiO2/Bentonite System. Int. J. Environ. Sci. Technol. 2016, 13, 907–926. DOI: 10.1007/s13762-015-0928-5.
  • Ogunmodede, O.; Ojo, A.; Adewole, E.; Adebayo, O. Adsorptive Removal of Anionic Dye from Aqueous Solutions by Mixture of Kaolin and Bentonite Clay: Characteristics, Isotherm, Kinetic and Thermodynamic Studies. Iranica Journal of Energy & Environment 2015, 6, 147–153.
  • Bilal, S.; Mohammed-Dabo, I.; Dewu, B.; Momoh, O.; Aminu, A. H.; Abubakar, U.; Adamu, M.; Mashi, A. Determination of Morphological Features and Molecular Interactions of Nigerian Bentonitic Clays Using Scanning Electron Microscope (SEM). Bayero J. Pure App. Sci. 2017, 9, 279–285. DOI: 10.4314/bajopas.v9i2.47.
  • Rout, P. R.; Bhunia, P.; Dash, R. R. A Mechanistic Approach to Evaluate the Effectiveness of Red Soil as a Natural Adsorbent for Phosphate Removal from Wastewater. Desalination Water Treat 2015, 54, 358–373. DOI: 10.1080/19443994.2014.881752.
  • Rotondo, G. G.; Romano, F.; Pappalardo, G.; Pappalardo, L.; Rizzo, F. Non-Destructive Characterization of Fifty Various Species of Pigments of Archaeological and Artistic Interest by Using the Portable X-Ray Diffraction System of the LANDIS Laboratory of Catania (Italy). Microchem. J 2010, 96, 252–258. DOI: 10.1016/j.microc.2010.03.009.
  • Bugoi, R.; Constantinescu, B.; Pantos, E.; Popovici, D. Investigation of Neolithic Ceramic Pigments Using Synchrotron Radiation X-Ray Diffraction. Powder Diffr. 2008, 23, 195–199. DOI: 10.1154/1.2958068.
  • Fil, B.; Ozmetin, C.; Korkmaz, M. Characterization and Electrokinetic Properties of Montmorillonite. Bulg. Chem. Commun 2014, 46, 258–263.
  • Roman, R. S.; Banon, C. B.; Ruiz, M. D. L. Analysis of the Red Ochre of the El Mirón Burial (Ramales de la Victoria, Cantabria, Spain). J. Archaeol. Sci 2015, 60, 84–98.
  • Dankova, Z.; Mockovciakova, A.; Skvarla, J. Sorption of Cadmium (II) from Aqueous Solution by Magnetic Clay Composite. Desalination Water Treat 2010, 24, 284–292.
  • De Oliveira, C.; Rocha, M.; Da Silva, A.; Bertolino, L. Characterization of Bentonite Clays from Cubati, Paraíba (Northeast of Brazil). Ceramica 2016, 62, 272–277. DOI: 10.1590/0366-69132016623631970.
  • Mortimore, J. L.; Marshall, L.-J. R.; Almond, M. J.; Hollins, P.; Matthews, W. Analysis of Red and Yellow Ochre Samples from Clearwell Caves and Çatalhöyük by Vibrational Spectroscopy and Other Techniques. Spectrochim. ACTA A 2004, 60, 1179–1188. DOI: 10.1016/j.saa.2003.08.002.
  • Lopezgonzalez, JdD.; Deitz, V. R. Surface Changes in an Original and Activated Bentonite. J. Res. Natl. Bur. Stan. 1952, 48, 325–333. DOI: 10.6028/jres.048.041.
  • Kobayashi, I.; Owada, H.; Ishii, T.; Iizuka, A. Evaluation of Specific Surface Area of Bentonite-Engineered Barriers for Kozeny-Carman Law. Soils Found 2017, 57, 683–697. DOI: 10.1016/j.sandf.2017.08.001.
  • Amari, A.; Gannouni, H.; Khan, M.; Almesfer, M.; Elkhaleefa, A.; Gannouni, A. Effect of Structure and Chemical Activation on the Adsorption Properties of Green Clay Minerals for the Removal of Cationic Dye. Appl. Sci 2018, 8, 2302. DOI: 10.3390/app8112302.
  • Hu, Z. P.; Gao, Z. M.; Liu, X.; Yuan, Z. Y. High-Surface-Area Activated Red Mud for Efficient Removal of Methylene Blue from Wastewater. Adsorpt. Sci. Technol 2018, 36, 62–79. DOI: 10.1177/0263617416684348.
  • Wongrod, S.; Simon, S.; Guibaud, G.; Lens, P. N.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E. D. Lead Sorption by Biochar Produced from Digestates: Consequences of Chemical Modification and Washing. J. Environ. Manage. 2018, 219, 277–284. DOI: 10.1016/j.jenvman.2018.04.108.
  • Siswoyo, E.; Mihara, Y.; Tanaka, S. Determination of Key Components and Adsorption Capacity of a Low Cost Adsorbent Based on Sludge of Drinking Water Treatment Plant to Adsorb Cadmium Ion in Water. Appl. Clay Sci 2014, 97-98, 146–152. DOI: 10.1016/j.clay.2014.05.024.
  • Ong, D. C.; Kan, C. C.; Pingul-Ong, S. M. B.; de Luna, M. D. G. Utilization of Groundwater Treatment Plant (GWTP) Sludge for Nickel Removal from Aqueous Solutions: Isotherm and Kinetic Studies. J. Environ. Chem. Eng 2017, 5, 5746–5753. DOI: 10.1016/j.jece.2017.10.046.
  • Yoro, K.; Amosa, M.; Sekoai, P.; Mulopo, L.; Daramola, M. O. Diffusion Mechanism and Effect of Mass Transfer Limitation during the Adsorption of CO2 by Polyaspartamide in a Packed-Bed Unit. Int. J. Sustain. Eng 2019, 13, 54–67.
  • Yakout, S. M.; Elsherif, E. Batch Kinetics, Isotherm and Thermodynamic Studies of Adsorption of Strontium from Aqueous Solutions onto Low Cost Rice-Straw Based Carbons. Carbon - Science and Technology 2010, 3, 144–153.
  • Dada, A. O.; Latona, D. F.; Ojediran, O. J.; Nath, O. O. Adsorption of Cu (II) onto Bamboo Supported Manganese (BS-Mn) Nanocomposite: effect of Operational Parameters, Kinetic, Isotherms, and Thermodynamic Studies. Journal of Applied Sciences and Environmental Management 2016, 20, 409–422.
  • Yakout, S.; Elsherif, E. Carbon—Science and Technology. Applied Science Innovations Pvt. Ltd India 2010, 1, 144–153.
  • Ferri, J. K.; Stebe, K. J. Which Surfactants Reduce Surface Tension Faster? a Scaling Argument for Diffusion-Controlled Adsorption. Adv. Colloid Interface Sci. 2000, 85, 61–97. DOI: 10.1016/S0001-8686(99)00027-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.