Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 9
184
Views
5
CrossRef citations to date
0
Altmetric
Articles

Copper affects steroidogenesis and viability of human adrenocortical carcinoma (NCI-H295R) cell line in vitro

ORCID Icon, ORCID Icon, , , , , , ORCID Icon, & show all
Pages 1070-1077 | Received 04 Mar 2020, Accepted 09 May 2020, Published online: 21 May 2020

References

  • Sanderson, J. T. The Steroid Hormone Biosynthesis Pathway as a Target for Endocrine-Disrupting Chemicals. Toxicol. Sci. 2006, 94, 3–21. DOI: 10.1093/toxsci/kfl051.
  • Kabir, E. R.; Rahman, M. S.; Rahman, I. A Review on Endocrine Disruptors and Their Possible Impacts on Human Health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. DOI: 10.1016/j.etap.2015.06.009.
  • Sanderson, J. T.; Berg, M. Interactions of Xenobiotics with the Steroid Hormone Biosynthesis Pathway. Pure Appl. Chem. 2003, 75, 1957–1971. DOI: 10.1351/pac200375111957.
  • Arabi, M.; Mohammadpour, A. A. Adverse Effects of Cadmium on Bull Spermatozoa. Vet. Res. Commun. 2006, 30, 943–951. DOI: 10.1007/s11259-006-3384-3.
  • Roychoudhury, S.; Massanyi, P. In vitro Copper Inhibition of the Rabbit Spermatozoa Motility. J. Environ. Sci. Health Part A 2008, 43, 658–663.
  • Knazicka, Z.; Lukac, N.; Forgacs, Z.; Tvrda, E.; Lukacova, J.; Slivkova, J.; Binkowski, Ł.; Massanyi, P. Effects of Mercury on the Steroidogenesis of Human Adrenocarcinoma (NCI-H295R) Cell Line. J. Environ. Sci. Health A. 2013, 48, 348–353. DOI: 10.1080/10934529.2013.726908.
  • Knazicka, Z.; Forgacs, Z.; Lukacova, J.; Roychoudhury, S.; Massanyi, P.; Lukac, N. Endocrine Disruptive Effects of Cadmium on Steroidogenesis: Human Adrenocortical Carcinoma Cell Line NCI-H295R As a Cellular Model for Reproductive Toxicity Testing. J. Environ. Sci. Health, Part A 2015, 50, 348–356. DOI: 10.1080/10934529.2015.987520.
  • Knazicka, Z.; Bezakova, J.; Bistakova, J.; Jambor, T.; Massanyi, P.; Bojnanska, T.; Lukac, N. Dávkovo a časovo závislý účinok chloridu meďnatého na samčí reprodukčný system in vitro. Folia Medica Cassoviensia 2016, 70, 9–16.
  • Lukacova, J.; Knazicka, Z.; Tvrda, E.; Gren, A.; Lukac, N.; Massanyi, P. The Impact of Nonylphenol (NP) on the Spermatozoa Motility in vitro. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 1551–1560.
  • Lukac, N.; Lukacova, J.; Pinto, B.; Knazicka, Z.; Tvrda, E.; Massanyi, P. The Effect of Nonylphenol on the Motility and Viability of Bovine Spermatozoa in vitro. J. Environ. Sci. Health Part A 2013, 48, 973–979. DOI: 10.1080/10934529.2013.762744.
  • Jambor, T.; Lukacova, J.; Tvrda, E.; Knazicka, Z.; Forgacs, Z.; Lukac, N. The Impact of 4-Nonylphenol on the Viability and Hormone Production of Mouse Leydig Cells. Folia Biol (Praha) 2016, 62, 34–39.
  • Bistakova, J.; Forgacs, Z.; Bartos, Z.; Szivosne, M. R.; Jambor, T.; Knazicka, Z.; Tvrda, E.; Libova, L.; Goc, Z.; Massanyi, P.; Lukac, N. Effects of 4-Nonylphenol on the Steroidogenesis of Human Adrenocarcinoma Cell Line (NCI-H295R). J. Environ. Sci. Health A. 2017, 52, 221–227. DOI: 10.1080/10934529.2016.1246936.
  • Pinto, B.; Garritano, S. L.; Cristofani, R.; Ortaggi, G.; Giuliano, A.; Amodio Cocchieri, R.; Cirillo, T.; De Giusti, M.; Boccia, A.; Reali, D. Monitoring of Polychlorinated Biphenyl Contamination and Estrogenic Activity in Water, Commercial Feed and Farmed Seafood. Environ. Monit. Assess. 2008, 144, 445–453. DOI: 10.1007/s10661-007-0007-6.
  • Kendig, E. L.; Buesing, D. R.; Christie, S. M.; Cookman, C. J.; Gear, R. B.; Hugo, E. R.; Kasper, S. N.; Kendziorski, J. A.; Ungi, K. R.; Williams, K.; Belcher, S. M. Estrogen-Like Disruptive Effects of Dietary Exposure to Bisphenol A or 17α-Ethinyl Estradiol in CD1 Mice. Int. J. Toxicol. 2012, 31, 537–550. DOI: 10.1177/1091581812463254.
  • Lukacova, J.; Jambor, T.; Knazicka, Z.; Tvrda, E.; Kolesarova, A.; Lukac, N. Dose- and Time-Dependent Effects of Bisphenol A on Bovine Spermatozoa in vitro. J. Environ. Sci. Health, Part A 2015, 50, 669–676. DOI: 10.1080/10934529.2015.1011963.
  • Craig, P. M.; Galus, M.; Wood, C. H. M.; McClelland, G. B. Dietary Iron Alters Waterborne Copper-Induced Gene Expression in Soft Water Acclimated Zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, 362–373.
  • Yunus, E. U.; Mustafa, S.; Mustafa, A. T.; Baki, H. Determination of Lead, Copper and Iron in Cosmetics, Water, Soil and Food Using Polyhydroxybutyrate-B-Polydimethyl Siloxane Preconcentration and Flame Atomic Absorption Spectroscopy. Anal. Lett. 2015, 48, 1163–1179.
  • Dobrzanski, Z.; Kolacz, R.; Bodak, E. Heavy Metals in Animal Environment. Medycyna Weterynaryjna 1996, 52, 570–574.
  • Tang, S. H. Study of Interaction between Gelatin and Copper (II) Using Synchronours Fluorescence Spectroscopy. J. Photographic Sci. Photochem. 2005, 23, 102–107.
  • Agarwal, K.; Sharma, A.; Talukder, G. Clastogenic Effects of Copper Sulphate on the Bone Marrow Chromosomes of Mice in vivo. Mutat. Res. 1990, 243, 1–6. DOI: 10.1016/0165-7992(90)90115-Z.
  • Kong, Y. Q.; Chen, L. Q.; Li, E. C.; Du, Z. Y.; Ding, Z. L. Growth and Antioxidant Activity of Juvenile Oriental River Prawn Macrobrachium Nipponense, Fed Diets Containing Different Copper Levels Under Nitrite Exposure. Global Adv. Res. J. Agricul. Sci. 2014, 3, 119–122.
  • Gaetke, L. M.; Chow, C. K. Copper Toxicity, Oxidative Stress and Antioxidant Nutriens. Toxicology 2003, 189, 147–163. DOI: 10.1016/S0300-483X(03)00159-8.
  • Aydemir, B.; Kiziler, A. R.; Onaran, I.; Alici, B.; Ozkara, H.; Akyolcu, M. C. Impact of Cu and Fe Concentrations on Oxidative Damage in Male Infertility. BTER 2006, 112, 193–203. DOI: 10.1385/BTER:112:3:193.
  • Prohaska, J. R. Copper. In: Present Knowledge in Nutrition; Erdman, J., Macdonald, I., Zeisel, S., Eds. Wiley, Blackwell, Oxford; 2012; pp 873–896
  • Prohaska, J. R. Impact of Copper Deficiency in Humans. Ann. N.Y. Acad. Sci. 2014, 1314, 1–5. DOI: 10.1111/nyas.12354.
  • Kumar, N.; Crum, B.; Petersen, R. C.; Vernino, S. A.; Ahlskog, J. E. Copper Deficiency Myelopathy. Arch. Neurol. 2004, 61, 762–766. DOI: 10.1001/archneur.61.5.762.
  • Matak, P.; Zumerle, S.; Mastrogiannaki, M.; El Balkhi, S.; Delga, S.; Mathieu, J. R. R.; Canonne-Hergaux, F.; Poupon, J.; Sharp, P. A.; Vaulont, S.; Peyssonnaux, C. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice. PLoS One 2013, 8, e59538DOI: 10.1371/journal.pone.0059538.
  • Georgopoulos, A. R.; Yonone-Lioy, M. J.; Opiekun, R. E.; Lioy, P. J. Environmental Copper: Its Dynamics and Human Exposure Issues. J. Toxicol. Environ. Health Part B Crit. Rev. 2001, 4, 341–394.
  • Romic, M.; Romic, D. Heavy Metals Distribution in Agricultural Topsoils in Urban Area. Environ. Geol. 2003, 43, 795–805. DOI: 10.1007/s00254-002-0694-9.
  • WHO. 1996. Trace elements in human nutrition and health. Copper. Geneva, Switzerland: World Health Organization, 123–143.
  • Agency for Toxic Substances and Disease Registry (ATSDR). 2004. Toxicological profile for Copper. U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA.
  • Ishola, A. B.; Okechukwu, I. M.; Ashimedua, U. G.; Uchechukwu, D.; Michael, E. A.; Moses, O. O.; Okwudili, I. H.; Vaima, H. M.; Itakure, A. U.; Ifeanyichukwu, O. K. Serum Level of Lead, Zinc, Cadmium, Copper and Chromium among Occupationally Exposed Automotive Workers in Benin City. Int. J. Environ. Pollut. Res. 2017, 5, 70–79.
  • Burtis, C. A.; Ashwood, E. R.; Bruns, D. E. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics (e-book). 5th ed.; Saunders Elsevier: St. Louis, 2012, 2238.
  • Saha, A.; Karnik, A.; Sathawara, N.; Kulkarni, P.; Singh, V. Ceruloplasmin as a Marker of Occupational Copper Exposure. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 332–337. DOI: 10.1038/jes.2008.2.
  • Sabir, S. M.; Khan, S. W.; Hayat, I. Effect of Environmental Pollution on Quality of Meat in District Bagh, Azad Kashmir. Pakistan J. Nutr. 2003, 2, 98–101. DOI: 10.3923/pjn.2003.98.101.
  • Ahasan, H. A.; Rafiqueuddin, A. K.; Chowdhury, M. A.; Azhar, M. A.; Kabir, F. Neuromyelitis Optica (Devic’s Disease) Following Chicken Pox. Trop Doct. 1994, 24, 75–76. DOI: 10.1177/004947559402400211.
  • Olivares, M.; Araya, M.; Pizarro, F.; Uauy, R. Uauy, R. Nausea Threshold in Apparently Healthy Individuals Who Drink Fluids Containing Graded Concentrations of Copper. Regul. Toxicol. Pharmacol. 2001, 33, 271–275. DOI: 10.1006/rtph.2000.1440.
  • Bandmann, O.; Weiss, K. H.; Kaler, S. G. Wilson’s Disease and Other Neurological Copper Disorders. Lancet Neurol. 2015, 14, 103–113. DOI: 10.1016/S1474-4422(14)70190-5.
  • Roychoudhury, S.; Nath, S.; Massanyi, P.; Stawarz, R.; Kacaniova, M.; Kolesarova, A. Copper-Induced Changes in Reproductive Functions: In Vivo and In Vitro Effects (Review). Physiol Res. 2016, 65, 11–22. DOI: 10.33549/physiolres.933063.
  • Roychoudhury, S.; Massanyi, P.; Bulla, J.; Choudhury, M. D.; Straka, L.; Lukac, N.; Formicki, G.; Dankova, M.; Bardos, L. In vitro Copper Toxicity on Rabbit Spermatozoa Motility, Morphology and Cell Membrane Integrity. J. Environ. Sci. Health. Part A 2010, 45, 1482–1491. DOI: 10.1080/10934529.2010.506092.
  • Chattopadhyay, A.; Biswas, N. Testosterone Supplemented Protection on Inhibition of Testicular Function Induced by Copper Chloride. DHR Int. J. Biomed. Life Sci. 2013, 4, 212–223.
  • Kolesarova, A.; Capcarova, M.; Roychoudhury, S. Metal Induced Ovarian Signaling. 1st ed.; Slovak University of Agriculture in Nitra, Nitra, 2010.
  • Roychoudhury, S.; Bulla, J.; Sirotkin, A. V.; Kolesarova, A. In vitro Changes in Porcine Ovarian Granulosa Cells Induced by Copper. J. Environ. Sci. Health A 2014, 49, 625–633. DOI: 10.1080/10934529.2014.865404.
  • Jockenhovel, F.; Bals-Pratsch, M.; Bertram, H. P.; Nieschlag, E. Seminal Lead and Copper in Fertile and Infertile Men. Andrologia 1990, 22, 503–511. DOI: 10.1111/j.1439-0272.1990.tb02041.x.
  • Katayose, H.; Shinohara, A.; Chiba, M.; Yamada, H.; Tominaga, K.; Sato, A.; Yanagida, K. Effects of Various Elements in Seminal Plasma on Semen Profiles. J. Mamm. Ova Res. 2004, 21, 141–148. DOI: 10.1274/jmor.21.141.
  • Xu, Y.; Xiao, F. L.; Xu, N.; Qian, S. Z. Effect of Intra-Epididymal Injection of Copper Particles on Fertility, Spermatogenesis and Tissue Copper Levels in Rats. Int. J. Androl. 1985, 8, 168–174. DOI: 10.1111/j.1365-2605.1985.tb00830.x.
  • Skandhan, K. P. Review on Copper in Male Reproduction and Contraception. Rev. Fr. Gynecol. Obstet. 1992, 87, 594–608.
  • Eidi, M.; Eidi, A.; Pouyan, O.; Shahmohammadi, P.; Fazaeli, R.; Bahar, M. Seminal Plasma Levels of Copper and Its Relationship with Seminal Parameters. Iran. J. Reprod. Med. 2010, 8, 60–65.
  • Scialli, R. A.; Zinaman, J. M. Reproductive toxicology and infertility. McGraw, Hill: New York, 1993.
  • Roychoudhury, S.; Slivkova, J.; Bulla, J.; Massanyi, P. Copper Administration Alerts Fine Parameters of Spermatozoa Motility in vitro. Folia Vet. 2008, 52, 64–68.
  • Knazicka, Z.; Tusimova, E.; Bezakova, J.; Miskeje, M.; Bojnanska, T.; Lukac, N. Relationship between Copper in Different Culture Media and Bovine Spermatozoa Motility Parametres in vitro. J. Microbiol. Biotech. Food Sci. 2017/2018, 7, 226–234.
  • Pesch, S.; Bergmann, M.; Bostedt, H. Determination of Some Enzymes and Macro- and Microelements in Stallion Seminal Plasma and Their Correlations to Semen Quality. Theriogenology 2006, 66, 307–313. DOI: 10.1016/j.theriogenology.2005.11.015.
  • Zhang, L. H.; Luo, Z.; Song, Y. F.; Shi, X.; Pan, Y. X.; Fan, Y. F.; Xu, Y. H. Effects and Mechanisms of Waterborne Copper Exposure Influencing Ovary Development and Related Hormones Secretion in Yellow Catfish Pelteobagrus Fulvidraco. Aquat. Toxicol. 2016, 178, 88–98. DOI: 10.1016/j.aquatox.2016.07.014.
  • Hoseini, S. M.; Rajabiesterabadi, H.; Kordrostami, S. Chronic Exposure of Rutilus Rutilus Caspicus Fingerlings to Ambient Copper: Effects on Food Intake, Growth Performance, Biochemistry and Stress Resistance. Toxicol. Ind. Health 2016, 32, 375–383. DOI: 10.1177/0748233713500825.
  • Yang, J.; Hu, S.; Rao, M.; Hu, L.; Lei, H.; Wu, Y.; Wang, Y.; Ke, D.; Xia, W.; Zhu, C.-H. Copper Nanoparticle-Induced Ovarian Injury, Follicular Atresia, Apoptosis, and Gene Expression Alterations in Female Rats. Int. J. Nanomed. 2017, 12, 5959–5971. DOI: 10.2147/IJN.S139215.
  • Klevay, L. M.; Christopherson, D. M. Copper Deficiency Halves Serum Dehydroepiandrosterone in Rats. J. Trace Elem. Med. Biol. 2000, 14, 143–145. DOI: 10.1016/S0946-672X(00)80002-4.
  • Zheng, G.; Wang, L.; Guo, Z.; Sun, L.; Wang, L.; Wang, C.; Zuo, Z.; Qiu, H. Association of Serum Heavy Metals and Trace Element Concentrations with Reproductive Hormone Levels and Polycystic Ovary Syndrome in Chinese Population. Biol. Trace Elem. Res. 2015, 167, 1–10. DOI: 10.1007/s12011-015-0294-7.
  • Hecker, M.; Giesy, J. P. Novel Trends in Endocrine Disruptor Testing: The H295R Steroidogenesis Assay to Identify Inducers and Inhibitors of Hormone Production. Anal. Bioanal. Chem. 2008, 390, 287–291. DOI: 10.1007/s00216-007-1657-5.
  • Hilscherova, K.; Jones, P. D.; Gracia, T.; Newsted, J. L.; Zhang, X.; Sanderson, J. T.; Yu, R. M. K.; Wu, R. S. S.; Giesy, J. P. Assessment of the Effects of Chemicals on the Expression of Ten Steroidogenic Genes in the H295R Cell Line Using Real-Time PCR. Toxicol. Sci. 2004, 81, 78–89. DOI: 10.1093/toxsci/kfh191.
  • Hecker, M.; Newsted, J. L.; Murphy, M. B.; Higley, E. B.; Jones, P. D.; Wu, R. S. S.; Giesy, J. P. Human Adrenocarcinoma (H295R) Cells for Rapid in vitro Determination of Effects on Steroidogenesis: Hormone Production. Toxicol. Appl. Pharmacol. 2006, 217, 114–124. DOI: 10.1016/j.taap.2006.07.007.
  • OECD 2011. H295R Steroidogenesis Assay, OECD Guideline for the Testing of Chemicals No. 456, Paris. http://www.oecd;ilibrary.org/environment/test;no;456;h295r;steroidogenesis;assay_9789264122642. ;en.
  • Zhang, X.; Yu, R. M. K.; Jones, P. D.; Lam, G. K. W.; Newsted, J. L.; Gracia, T.; Hecker, M.; Hilscherova, K.; Sanderson, J. T.; Wu, R. S. S.; Giesy, J. P. Quantitative RT-PCR Methods for Evaluating Toxicant-Induced Effects on Steroidogenesis Using the H295R Cell Line. Environ. Sci. Technol. 2005, 39, 2777–2785. DOI: 10.1021/es048679k.
  • United States Environmental Protection Agency, Endocrine Disruptor Screening Program Test Guidelines OPPTS 890.1550: Steroidogenesis (Human Cell Line – H295R), EPA 640-C-09-003, 2009 http://www.epa.gov/ocspp/pubs/frs/publications/TestGuidelines/series890.htm.
  • Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Surrival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4.
  • Gazdar, A. F.; Oie, H. K.; Shackleton, C. H.; Chen, T. R.; Triche, T. J.; Myers, C. E.; Chrousos, G. P.; Brennan, M. F.; Stein, C. A.; La Rocca, R. V. Establishment and Characterization of a Human Adrenocortical Carcinoma Cell Line That Expresses Multiple Pathways of Steroid Biosynthesis. Cancer Res. 1990, 50, 5488–5496.
  • Rainey, W. E.; Saner, K.; Schimmer, B. P. Adrenocortical Cell Lines. Mol. Cell. Endocrinol. 2004, 228, 23–28. DOI: 10.1016/j.mce.2003.12.020.
  • Gracia, T.; Hilscherova, K.; Jones, P. D.; Newsted, J. L.; Zhang, X. W.; Hecker, M.; Higley, E. B.; Sanderson, J. T.; Yu, R. M. K.; Wu, R. S. S.; Giesy, J. P. The H295R System for Evaluation of Endocrine-Disrupting Effects. Ecotoxicol. Environ. Saf. 2006, 65, 293–305. DOI: 10.1016/j.ecoenv.2006.06.012.
  • Ding, L.; Murphy, M. B.; He, Y.; Xu, Y.; Yeung, L. W.; Wang, J.; Zhou, B.; Lam, P. K.; Wu, R. S.; Giesy, J. P. Effects of Brominated Flame Retardants and Brominated Dioxins on Steroidogenesis in H295R Human Adrenocortical Carcinoma Cell Line. Environ. Toxicol. Chem. 2007, 26, 764–772. DOI: 10.1897/06-388R1.1.
  • Strajhar, P.; Tonoli, D.; Jeanneret, F.; Imhof, R. M.; Malagnino, V.; Patt, M.; Kratschmar, D. V.; Boccard, J.; Rudaz, S.; Odermatt, A. Steroid Profiling in H295R Cells to Identify Chemicals Potentially Disrupting the Production of Adrenal Steroids. Toxicology 2017, 381, 51–53. DOI: 10.1016/j.tox.2017.02.010.
  • Jumhawan, U.; Yamashita, T.; Ishida, K.; Fukusaki, E.; Bamba, T. Simultaneous Profiling of 17 Steroid Hormones for the Evaluation of Endocrine-Disrupting Chemicals in H295R Cells. Bioanalysis 2017, 9, 67–69. DOI: 10.4155/bio-2016-0149.
  • Chattopadhyay, A.; Sarkar, M.; Biswas, N. M. Dose-Dependent Effect of Copper Chloride on Male Reproductive Function in Immature Rats. Kathmandu Univ. Med. J. 2005, 3, 392–400.
  • Khushboo, M.; Murthy, M. K.; Devi, M. S.; Sanjeev, S.; Ibrahim, K. S.; Kumar, N. S.; Roy, V. K.; Gurusubramanian, G. Testicular Toxicity and Sperm Quality Following Copper Exposure in Wistar Albino Rats: Ameliorative Potentials of L-Carnitine. Environ. Sci. Pollut. Res. Int. 2018, 25, 1837–1862. DOI: 10.1007/s11356-017-0624-8.
  • Chattopadhyay, A.; Sarkar, M.; Biswas, N. M. Effect of Copper Chloride on Adrenocortical Activities in Adult and Immature Male Rats. Environ. Toxicol. Pharmacol. 2002, 11, 79–84. DOI: 10.1016/S1382-6689(01)00107-7.
  • Bhardwaj, J. K.; Sharma, P. K. Changes in Trace Elements during Follicular Atresia in Goat (Capra hircus) Ovary. Biol. Trace Elem. Res. 2011, 140, 291–298. DOI: 10.1007/s12011-010-8700-7.
  • Kendall, N. R.; Marsters, P.; Guo, L.; Scaramuzzi, R. J.; Campbell, B. K. Effect of Copper and Thiomolybdates on Bovine Theca Cell Differentiation in vitro. J. Endocrinol. 2006, 189, 455–463. DOI: 10.1677/joe.1.06278.
  • Kendall, N. R.; Marsters, P.; Scaramuzzi, R. J.; Campbell, B. K. Expression of Lysyl Oxidase and Effect of Copper Chloride and Ammonium Tetrathiomolybdate on Bovine Ovarian Follicle Granulosa Cells Cultured in Serum-Free Media. Reproduction 2003, 125, 657–665. DOI: 10.1530/reprod/125.5.657.
  • Sun, Y.; Wang, W.; Guo, Y.; Zheng, B.; Li, H.; Chen, J.; Zhang, W. High Copper Levels in Follicular Fluid Affect Follicle Development in Polycystic Ovary Syndrome Patients: Population-Based and in vitro Studies. Toxicol. Appl. Pharmacol. 2019, 365, 101–111. DOI: 10.1016/j.taap.2019.01.008.
  • Chang, C. S.; Park, S. B.; Choi, J. B.; Kim, H. J. Correlation between Serum Testosterone Level and Concentrations of Copper and Zinc in Hair Tissue. Biol. Trace Elem. Res. 2011, 144, 264–271. DOI: 10.1007/s12011-011-9085-y.
  • Laskey, J. W.; Phelps, P. V. Effect of Cadmium and Other Metal Cations on in vitro Leydig Cell Testosterone Production. Toxicol. Appl. Pharmacol. 1991, 108, 296–306. DOI: 10.1016/0041-008X(91)90119-Y.
  • Ng, T. B.; Liu, W. K. Toxic Effect of Heavy Metals on Cell Isolated from the Rat Adrenal and Testis. In Vitro Cell. Dev. Biol. 1990, 26, 24–28. DOI: 10.1007/BF02624150.
  • Nishiyama, S.; Nakamura, K.; Ogawa, M. Effects of Heavy Metals on Corticosteroid Production in Cultured Rat Adrenolcortical Cells. Toxicol. Appl. Pharmacol. 1985, 81, 174–176. DOI: 10.1016/0041-008X(85)90132-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.