Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 55, 2020 - Issue 9
244
Views
3
CrossRef citations to date
0
Altmetric
Articles

Microbial community dynamics during anaerobic co-digestion of corn stover and swine manure at different solid content, carbon to nitrogen ratio and effluent volumetric percentages

ORCID Icon, , , , , , & show all
Pages 1111-1124 | Received 07 Mar 2020, Accepted 15 May 2020, Published online: 27 May 2020

Reference

  • Joseph, G.; Zhang, B.; Mahzabin Rahman, Q.; Wang, L.; Shahbazi, A. Two-sStage Thermophilic Anaerobic co-Digestion of Corn Stover and Cattle Manure to Enhance Biomethane Production. J. Environ. Sci. Health, Part A 2019, 54, 452–459. DOI: 10.1080/10934529.2019.1567156.
  • Xu, R.; Zhang, K.; Liu, P.; Khan, A.; Xiong, J.; Tian, F.; Li, X. A Critical Review on the Interaction of Substrate Nutrient Balance and Microbial Community Structure and Function in Anaerobic co-Digestion. Bioresour. Technol. 2018a, 247, 1119–1127. DOI: 10.1016/j.biortech.2017.09.095.
  • Cardona, L.; Levrard, C.; Guenne, A.; Chapleur, O.; Mazéas, L. Co-Digestion of Wastewater Sludge: Choosing the Optimal Blend. Waste Manag. 2019, 87, 772–781. DOI: 10.1016/j.wasman.2019.03.016.
  • El-Mashad, H. M.; Zhang, R. Biogas Production from Co-Digestion of Dairy Manure and Food Waste. Bioresour. Technol. 2010, 101, 4021–4028. DOI: 10.1016/j.biortech.2010.01.027.
  • Esposito, G.; Frunzo, L.; Giordano, A.; Liotta, F.; Panico, A.; Pirozzi, F. Anaerobic Co-Digestion of Organic Wastes. Rev. Environ. Sci. Biotechnol. 2012, 11, 325–341. DOI: 10.1007/s11157-012-9277-8.
  • Fernández, A.; Sanchez, A.; Font, X. J. B. E. J. Anaerobic Co-Digestion of a Simulated Organic Fraction of Municipal Solid Wastes and Fats of Animal and Vegetable Origin. Biochem. Eng. J. 2005, 26, 22–28. DOI: 10.1016/j.bej.2005.02.018.
  • Davidsson, A.; Lövstedt, C.; Jansen, J. l C.; Gruvberger, C.; Aspegren, H. Co-Digestion of Grease Trap Sludge and Sewage Sludge. Waste Manag. 2008, 28, 986–992. DOI: 10.1016/j.wasman.2007.03.024.
  • Velásquez Piñas, J. A.; Venturini, O. J.; Silva Lora, E. E.; Calle Roalcaba, O. D. Technical Assessment of Mono-Digestion and Co-Digestion Systems for the Production of Biogas from Anaerobic Digestion in Brazil. Renew. Energy 2018, 117, 447–458. DOI: 10.1016/j.renene.2017.10.085.
  • Neshat, S. A.; Mohammadi, M.; Najafpour, G. D.; Lahijani, P. Anaerobic Co-Digestion of Animal Manures and Lignocellulosic Residues as a Potent Approach for Sustainable Biogas Production. Renew. Sust. Energy Rev. 2017, 79, 308–322. DOI: 10.1016/j.rser.2017.05.137.
  • Riya, S.; Suzuki, K.; Terada, A.; Hosomi, M.; Zhou, S. Influence of C/N Ratio on Performance and Microbial Community Structure of Dry-Thermophilic Anaerobic Co-Digestion of Swine Manure and Rice Straw. JOMB. 2016, 5, 11–14. DOI: 10.12720/jomb.5.1.11-14.
  • Katsimpouras, C.; Christakopoulos, P.; Topakas, E. Acetic Acid-Catalyzed Hydrothermal Pretreatment of Corn Stover for the Production of Bioethanol at High-Solids Content. Bioprocess Biosyst. Eng. 2016, 39, 1415–1423. DOI: 10.1007/s00449-016-1618-5.
  • Civelek Yoruklu, H.; Korkmaz, E.; Manav Demir, N.; Ozkaya, B.; Demir, A. The Impact of Pretreatment and Inoculum to Substrate Ratio on Methane Potential of Organic Wastes from Various Origins. J. Mater. Cycles Waste Manag. 2018, 20, 800–809. DOI: 10.1007/s10163-017-0641-1.
  • Mézes, L.; Bai, A.; Nagy, D.; Cinka, I.; Gabnai, Z. Optimization of Raw Material Composition in an Agricultural Biogas Plant. Tr. Ren. Energy 2017, 3, 61–75. DOI: 10.17737/tre.2017.3.1.0031.
  • Gavala, H. N.; Yenal, U.; Skiadas, I. V.; Westermann, P.; Ahring, B. K. Mesophilic and Thermophilic Anaerobic Digestion of Primary and Secondary Sludge. Effect of Pre-Treatment at Elevated Temperature. Water Res. 2003, 37, 4561–4572. DOI: 10.1016/S0043-1354(03)00401-9.
  • Abbassi-Guendouz, A.; Brockmann, D.; Trably, E.; Dumas, C.; Delgenès, J.-P.; Steyer, J.-P.; Escudié, R. Total Solids Content Drives High Solid Anaerobic Digestion via Mass Transfer Limitation. Bioresour. Technol. 2012, 111, 55–61. DOI: 10.1016/j.biortech.2012.01.174.
  • Vanwonterghem, I.; Jensen, P. D.; Dennis, P. G.; Hugenholtz, P.; Rabaey, K.; Tyson, G. W. Deterministic Processes Guide Long-Term Synchronised Population Dynamics in Replicate Anaerobic Digesters. ISME J. 2014, 8, 2015–2028. DOI: 10.1038/ismej.2014.50.
  • Riviere, D.; et al. Towards the Definition of a Core of Microorganisms Involved in Anaerobic Digestion of Sludge. ISME J. 2009, 3, 700.
  • De Vrieze, J.; Saunders, A. M.; He, Y.; Fang, J.; Nielsen, P. H.; Verstraete, W.; Boon, N. Ammonia and Temperature Determine Potential Clustering in the Anaerobic Digestion Microbiome. Water Res. 2015, 75, 312–323. DOI: 10.1016/j.watres.2015.02.025.
  • Carballa, M.; Regueiro, L.; Lema, J. M. Microbial Management of Anaerobic Digestion: Exploiting the Microbiome-Functionality Nexus. Curr. Opin. Biotechnol. 2015, 33, 103–111. DOI: 10.1016/j.copbio.2015.01.008.
  • Sundberg, C.; Al-Soud, W. A.; Larsson, M.; Alm, E.; Yekta, S. S.; Svensson, B. H.; Sørensen, S. J.; Karlsson, A. 454 Pyrosequencing Analyses of Bacterial and Archaeal Richness in 21 Full-Scale Biogas Digesters. FEMS Microbiol. Ecol. 2013, 85, 612–626. DOI: 10.1111/1574-6941.12148.
  • Maeder, D. L.; Anderson, I.; Brettin, T. S.; Bruce, D. C.; Gilna, P.; Han, C. S.; Lapidus, A.; Metcalf, W. W.; Saunders, E.; Tapia, R.; et al. The Methanosarcina barkeri Genome: Comparative Analysis with Methanosarcina acetivorans and Methanosarcina mazei Reveals Extensive Rearrangement within Methanosarcinal Genomes. J. Bacteriol. 2006, 188, 7922–7931. DOI: 10.1128/JB.00810-06.
  • St-Pierre, B.; Wright, A-DGJBt. Metagenomic Analysis of Methanogen Populations in Three Full-Scale Mesophilic Anaerobic Manure Digesters Operated on Dairy Farms in Vermont, USA. Bioresour. Technol. 2013, 138, 277–284. DOI: 10.1016/j.biortech.2013.03.188.
  • Manyi-Loh, C. E.; Mamphweli, S. N.; Meyer, E. L.; Okoh, A. I.; Makaka, G.; Simon, M. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy. Int. J. Environ. Res. Public Health 2013, 10, 4390–4417. DOI: 10.3390/ijerph10094390.
  • Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Muñoz-Palazon, B.; Garcia-Ruiz, M.-J.; Osorio, F.; van Loosdrecht, M. C. M.; Gonzalez-Lopez, J. Microbial Community Analysis of a Full-Scale DEMON Bioreactor. Bioprocess Biosyst. Eng. 2015, 38, 499–508. DOI: 10.1007/s00449-014-1289-z.
  • Wei, Y.; Li, X.; Yu, L.; Zou, D.; Yuan, H. Mesophilic Anaerobic Co-Digestion of Cattle Manure and Corn Stover with Biological and Chemical Pretreatment. Bioresour. Technol. 2015, 198, 431–436. DOI: 10.1016/j.biortech.2015.09.035.
  • Li, Y.; Merrettig-Bruns, U.; Strauch, S.; Kabasci, S.; Chen, H. Optimization of Ammonia Pretreatment of Wheat Straw for Biogas Production. J. Chem. Technol. Biotechnol. 2015, 90, 130–138. DOI: 10.1002/jctb.4297.
  • Wang, B.; Nges, I. A.; Nistor, M.; Liu, J. Determination of Methane Yield of Cellulose Using Different Experimental Setups. Water Sci. Technol. 2014, 70, 599–604. DOI: 10.2166/wst.2014.275.
  • Hussain, A.; Dubey, S. K. Specific Methanogenic Activity Test for Anaerobic Degradation of Influents. Appl. Water Sci. 2017, 7, 535–542. DOI: 10.1007/s13201-015-0305-z.
  • Saleh, A. F.; Kamarudin, E.; Yaacob, A. B.; Yussof, A. W.; Abdullah, M. A. Optimization of Biomethane Production by Anaerobic Digestion of Palm Oil Mill Effluent Using Response Surface Methodology. Asia-Pac. J. Chem. Eng. 2012, 7, 353–360. DOI: 10.1002/apj.550.
  • Zhang, B.; Zhang, Z.; von Keitz, M.; Valentas, K. Treatment Variable Effects on Supercritical Gasification of High-Diversity Grassland Perennials. Appl. Biochem. Biotechnol. 2009, 154, 59–66. DOI: 10.1007/s12010-009-8563-6.
  • Li, Y.-F.; Shi, J.; Nelson, M. C.; Chen, P.-H.; Graf, J.; Li, Y.; Yu, Z. Impact of Different Ratios of Feedstock to Liquid Anaerobic Digestion Effluent on the Performance and Microbiome of Solid-State Anaerobic Digesters Digesting Corn Stover. Bioresour. Technol. 2016, 200, 744–752. DOI: 10.1016/j.biortech.2015.10.078.
  • Caporaso, J. G.; Lauber, C. L.; Walters, W. A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S. M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. ISME J. 2012, 6, 1621–1624. DOI: 10.1038/ismej.2012.8.
  • Bornbusch, S. L.; Greene, L. K.; McKenney, E. A.; Volkoff, S. J.; Midani, F. S.; Joseph, G.; Gerhard, W. A.; Iloghalu, U.; Granek, J.; Gunsch, C. K.; et al. A Comparative Study of Gut Microbiomes in Captive Nocturnal Strepsirrhines. Am. J. Primatol. 2019, 81, e22986. DOI: 10.1002/ajp.22986.
  • Motte, J.-C.; Escudié, R.; Bernet, N.; Delgenes, J.-P.; Steyer, J.-P.; Dumas, C. Dynamic Effect of Total Solid Content, Low Substrate/Inoculum Ratio and Particle Size on Solid-State Anaerobic Digestion. Bioresour. Technol. 2013, 144, 141–148. DOI: 10.1016/j.biortech.2013.06.057.
  • Xu, F.; Wang, Z.-W.; Tang, L.; Li, Y. A Mass Diffusion-Based Interpretation of the Effect of Total Solids Content on Solid-State Anaerobic Digestion of Cellulosic Biomass. Bioresour. Technol. 2014, 167, 178–185. DOI: 10.1016/j.biortech.2014.05.114.
  • Nazurally, N. Anaerobic Digestion of Fish Waste and Seagrass/Macroalgae: Potential Sustainable Waste Management for Tropical Small Island Developing States. J. Mater. Cycles Waste Manag. , 2018, 20, 1724–1735. DOI: 10.1007/s10163-018-0738-1.
  • Ostertagová, E. Modelling Using Polynomial Regression. Procedia Eng. 2012, 48, 500–506. DOI: 10.1016/j.proeng.2012.09.545.
  • Tian, Z.; Cabrol, L.; Ruiz-Filippi, G.; Pullammanappallil, P. Microbial Ecology in Anaerobic Digestion at Agitated and Non-Agitated Conditions. PloS One. 2014, 9, e109769. DOI: 10.1371/journal.pone.0109769.
  • Shi, J.; Sharma-Shivappa, R. R.; Chinn, M.; Howell, N. Effect of Microbial Pretreatment on Enzymatic Hydrolysis and Fermentation of Cotton Stalks for Ethanol Production. Biomass Bioenergy 2009, 33, 88–96. DOI: 10.1016/j.biombioe.2008.04.016.
  • Amani, T.; Nosrati, M.; Mousavi, S. M.; Kermanshahi, R. K. Study of Syntrophic Anaerobic Digestion of Volatile Fatty Acids Using Enriched Cultures at Mesophilic Conditions. Int. J. Environ. Sci. Technol. 2011, 8, 83–96. DOI: 10.1007/BF03326198.
  • Tian, G.; Zhang, W.; Dong, M.; Yang, B.; Zhu, R.; Yin, F.; Zhao, X.; Wang, Y.; Xiao, W.; Wang, Q.; et al. Metabolic Pathway Analysis Based on High-Throughput Sequencing in a Batch Biogas Production Process. Energy 2017, 139, 571–579. DOI: 10.1016/j.energy.2017.08.003.
  • Dworkin, M. The Prokaryotes: Archaea. Bacteria: Firmicutes, Actinomycetes; Springer Science & Business Media, Springer-Verlag: New York, 2006.
  • Dighe, A. S.; Jangid, K.; González, J. M.; Pidiyar, V. J.; Patole, M. S.; Ranade, D. R.; Shouche, Y. S. Comparison of 16S rRNA Gene Sequences of Genus Methanobrevibacter. BMC Microbiol. 2004, 4, 20. DOI: 10.1186/1471-2180-4-20.
  • Li, Y.; Liu, C.; Wachemo, A. C.; Li, X. Effects of Liquid Fraction of Digestate Recirculation on System Performance and Microbial Community Structure during Serial Anaerobic Digestion of Completely Stirred Tank Reactors for Corn Stover. Energy 2018, 160, 309–317. DOI: 10.1016/j.energy.2018.06.082.
  • Yi, J.; Dong, B.; Jin, J.; Dai, X. Effect of Increasing Total Solids Contents on Anaerobic Digestion of Food Waste under Mesophilic Conditions: Performance and Microbial Characteristics Analysis. PloS One. 2014, 9, e102548. DOI: 10.1371/journal.pone.0102548.
  • Fu, S.-F.; Wang, F.; Shi, X.-S.; Guo, R.-B. Impacts of Microaeration on the Anaerobic Digestion of Corn Straw and the Microbial Community Structure. Chem. Eng. J. 2016, 287, 523–528. DOI: 10.1016/j.cej.2015.11.070.
  • Sun, L.; Liu, T.; Müller, B.; Schnürer, A. The Microbial Community Structure in Industrial Biogas Plants Influences the Degradation Rate of Straw and Cellulose in Batch tests. Biotechnol. Biofuels. 2016, 9, 128–128. DOI: 10.1186/s13068-016-0543-9.
  • Eriksen, N. T.; Riis, M. L.; Holm, N. K.; Iversen, N. H(2) Synthesis from Pentoses and Biomass in Thermotoga spp. Biotechnol. Lett. 2011, 33, 293–300. DOI: 10.1007/s10529-010-0439-x.
  • Bhandari, V.; Gupta, R. S. The Phylum Thermotogae. In The Prokaryotes: Other Major Lineages of Bacteria and The Archaea, Rosenberg, E., et al., Eds.; Springer: Berlin, Heidelberg, 2014; pp 989–1015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.