Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 2
225
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Chitosan film as recyclable adsorbent membrane to remove/recover hazardous pharmaceutical pollutants from water: the case of the emerging pollutant Furosemide

, ORCID Icon, , ORCID Icon, , ORCID Icon, , & show all
Pages 145-156 | Received 29 Jun 2020, Accepted 16 Nov 2020, Published online: 07 Dec 2020

References

  • Dias, E. M.; Petit, C. Towards the Use of Metal–Organic Frameworks for Water Reuse: A Review of the Recent Advances in the Field of Organic Pollutants Removal and Degradation and the Next Steps in the Field. J. Mater. Chem. A. 2015, 3, 22484–22506. DOI: 10.1039/C5TA05440K.
  • Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; van der Ploeg, M.; van de Zee, S. E. A. T. M.; Ritsema, C. J. Emerging Pollutants in the Environment: A Challenge for Water Resource Management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. DOI: 10.1016/j.iswcr.2015.03.002.
  • Rizzi, V.; Prasetyanto, E. A.; Chen, P.; Gubitosa, J.; Fini, P.; Agostiano, A.; De Cola, L.; Cosma, P. Amino Grafted MCM-41 as Highly Efficient and Reversible Ecofriendly Adsorbent Material for the Direct Blue Removal from Wastewater. J. Mol. Liq. 2018, 264, 398–409. DOI: 10.1016/j.molliq.2018.05.073.
  • Rizzi, V.; Fiorini, F.; Lamanna, G.; Gubitosa, J.; Prasetyanto, E. A.; Fini, P.; Fanelli, F.; Nacci, A.; De Cola, L.; Cosma, P. Polyamidoamine-Based Hydrogel for Removal of Blue and Red Dyes from Wastewater. Adv. Sustain. Syst. 2018, 2, UNSP 1700146.
  • Rizzi, V.; Longo, A.; Placido, T.; Fini, P.; Gubitosa, J.; Sibillano, T.; Giannini, C.; Semeraro, P.; Franco, E.; Ferrandiz, M.; Cosma, P. A Comprehensive Investigation of Chitosan/Dyes Blended Films for Green Chemistry Applications. J. Appl. Polym. Sci. 2018, 135, 45945. DOI: 10.1002/app.45945.
  • Semeraro, P.; Gabaldon, J. A.; Fini, P.; Nunez, E.; Pellicer, J. A.; Rizzi, V.; Cosma, P. Removal of an Azo Textile Dye from Wastewater by Cyclodextrin-Epichlorohydrin Polymers. In Cyclodextrin –A Versatile Ingredient; Arora, P.; Dhingra, N., Eds.; InTechOpen: London, UK, 2017; pp. 303–322
  • Rizzi, V.; D’Agostino, F.; Gubitosa, J.; Fini, P.; Petrella, A.; Agostiano, A.; Semeraro, P.; Cosma, P. Alternative Use of Olive Pomace as a Wide-Ranging Bioremediation Strategy to Adsorb and Recover Disperse Orange and Disperse Red Industrial Dyes from Wastewater. Separations 2017, 4, 29. DOI: 10.3390/separations4040029.
  • Rizzi, V.; Mongiovì, C.; Fini, P.; Petrella, A.; Semeraro, P.; Cosma, P. Operational Parameters Affecting the Removal and Recycling of Direct Blue Industrial Dye from Wastewater Using Bleached Oil Mill Waste as Alternative Adsorbent Material. IJEAB 2017, 2, 1560–1572. DOI: 10.22161/ijeab/2.4.15.
  • Rizzi, V.; D'Agostino, F.; Fini, P.; Semeraro, P.; Cosma, P. An Interesting Environmental Friendly Cleanup: The Excellent Potential of Olive Pomace for Disperse Blue Adsorption/Desorption from Wastewater. Dyes Pigm. 2017, 140, 480–490. DOI: 10.1016/j.dyepig.2017.01.069.
  • Semeraro, P.; Rizzi, V.; Fini, P.; Matera, S.; Cosma, P.; Franco, E.; Garcia, R.; Ferrandiz, M.; Nunez, E.; Gabaldon, J. A.; et al. Interaction between Industrial Textile Dyes and Cyclodextrins. Dyes Pigm. 2015, 119, 84–94. DOI: 10.1016/j.dyepig.2015.03.012.
  • Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Thermodynamic and Kinetic Investigation of Heavy Metals Sorption in Packed Bed Columns by Recycled Lignocellulosic Materials from Olive Oil Production. Chem. Eng. Commun. 2019, 206, 1715–1730. DOI: 10.1080/00986445.2019.1574768.
  • Petrella, A.; Spasiano, D.; Race, M.; Rizzi, V.; Cosma, P.; Liuzzi, S.; De Vietro, N. Porous. Waste Glass for Lead Removal in Packed Bed Columns and Reuse in Cement Conglomerates. Materials 2018, 12, 94. DOI: 10.3390/ma12010094.
  • Petrella, A.; Spasiano, D.; Rizzi, V.; Cosma, P.; Race, M.; De Vietro, N. Lead Ion Sorption by Perlite and Reuse of the Exhausted Material in the Construction Field. Appl. Sci. 2018, 8, 1882–1895. DOI: 10.3390/app8101882.
  • Petrella, A.; Spasiano, D.; Acquafredda, P.; De Vietro, N.; Ranieri, E.; Cosma, P.; Rizzi, V.; Petruzzelli, V.; Petruzzelli, D. Heavy Metals Retention (Pb(II), Cd(II), Ni(II)) Fromsingle and Multimetal Solutions by Naturalbiosorbents from the Olive Oil Milling Operations. Process Saf. Environ. 2018, 114, 79–90. DOI: 10.1016/j.psep.2017.12.010.
  • Klamerth, N.; Malato, S.; Aguera, A.; Fernandez-Alba, A. Photo-Fenton and Modified photo-Fenton at Neutral pH for the Treatment of Emerging Contaminants in Wastewater Treatment Plant Effluents: A Comparison. Water Res. 2013, 47, 833–840. DOI: 10.1016/j.watres.2012.11.008.
  • Ratola, N.; Cincinelli, A.; Alves, A.; Katsoyiannis, A. Occurrence of Organic Microcontaminants in the Wastewater Treatment Process. A Mini Review. J. Hazard Mater. 2012, 239–240, 1–18.
  • Cabeza, Y.; Candela, L.; Ronen, D.; Teijon, G. Monitoring the Occurrence of Emerging Contaminants in Treated Wastewater and Groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). J. Hazard. Mater. 2012, 239–240, 32–39.
  • Martín, J.; Camacho-Munoz, D.; Santos, J. L.; Aparicio, I.; Alonso, E. Occurrence of Pharmaceutical Compounds in Wastewater and Sludge from Wastewater Treatment Plants: Removal and Ecotoxicological Impact of Wastewater Discharges and Sludge Disposal. J. Hazard. Mater. 2012, 239–240, 40–47.
  • Sui, Q.; Zhao, W. T.; Cao, X. Q.; Lu, S. G.; Qiu, Z. F.; Gu, X. G.; Yu, G. Pharmaceuticals and Personal Care Products in the Leachates from Atypical Landfill Reservoir of Municipal Solid Waste in Shanghai, China: Occurrence and Removal by a Full-Scale Membrane Bioreactor. J. Hazard. Mater. 2017, 323, 99–108. DOI: 10.1016/j.jhazmat.2016.03.047.
  • Krzeminski, P.; Schwermer, C.; Wennberg, A.; Langford, K.; Vogelsang, C. Occurrence of UV Filters, Fragrances and Organophosphate Flameretardants in Municipal WWTP Effluents and Their Removal during Membrane Post-Treatment. J. Hazard. Mater. 2017, 323, 166–176. DOI: 10.1016/j.jhazmat.2016.08.001.
  • Goncalves, A. G.; Orfao, J. J. M.; Pereira, M. F. R. Catalytic Ozonation of Sulphamethoxazole in the Presence of Carbon Materials: Catalytic Performance and Reaction Pathways. J. Hazard. Mater. 2012, 239–240, 167–174.
  • Olvera-Vargas, H.; Oturan, N.; Buisson, D.; van Hullebusch, E. D.; Oturan, M. A. Electro-Oxidation of the Pharmaceutical Furosemide: Kinetics, Mechanism, and by-Products. Clean Soil Air Water 2015, 43, 1455–1463. DOI: 10.1002/clen.201400656.
  • Hu, Z. Z.; Cai, X. W.; Wang, Z. R.; Li, S.; Wang, Z. W.; Xie, X. Y. Construction of Carbon-Doped Supramolecule-Based g-C3N4/TiO2 Composites for Removal of Diclofenac and Carbamazepine: A Comparative Study of Operating Parameters, Mechanisms, Degradation Pathways. J. Hazard. Mater. 2019, 380, UNSP 120812.
  • Ahmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. DOI: 10.1016/j.jhazmat.2016.04.045.
  • Zhao, H.; Liu, X.; Cao, Z.; Zhan, Y.; Shi, X.; Yang, Y.; Zhou, J.; Xu, J. Adsorption Behavior and Mechanism of Chloramphenicols, Sulfonamides, and Non-Antibiotic Pharmaceuticals on Multi-Walled Carbon Nanotubes. J. Hazard. Mater. 2016, 310, 235–245. DOI: 10.1016/j.jhazmat.2016.02.045.
  • Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. DOI: 10.1021/acs.chemrev.8b00299.
  • Olvera-Vargas, H.; Leroy, S.; Rivard, M.; Oturan, N.; Oturan, M.; Buisson, D. Microbial Biotransformation of Furosemide for Environmental Risk Assessment: Identification of Metabolites and Toxicological Evaluation. Environ. Sci. Pollut. Res. Int. 2016, 23, 22691–22700. DOI: 10.1007/s11356-016-7398-2.
  • Laurence, C.; Zeghbib, N.; Rivard, M.; Lehri-Boufala, S.; Lachaise, I.; Barau, C.; Le Corvoisier, P.; Martens, T.; Garrigue-Antar, L.; Morin, C. A New Human Pyridinium Metabolite of Furosemide, Inhibitor of Mitochondrial Complex I, is a Candidate Inducer of Neurodegeneration. Biochem. Pharmacol. 2019, 160, 14–23.
  • Jjemba, P. K. Excretion and Ecotoxicity of Pharmaceutical and Personal Care Products in the Environment. Ecotoxicol. Environ. Saf. 2006, 63, 113–130. DOI: 10.1016/j.ecoenv.2004.11.011.
  • Vargas, F.; Volkmar, I. M.; Sequera, J.; Mendez, H.; Rojas, J.; Fraile, G.; Velasquez, M.; Medina, R. Photodegradation and Phototoxicity Studies of Furosemide. Involvement of Singlet Oxygen in the Photoinduced Hemolysis and Lipid Peroxidation. J. Photochem. Photobiol. B1998, 42, 219–225. DOI: 10.1016/S1011-1344(98)00074-8.
  • Katsura, S.; Yamada, N.; Nakashima, A.; Shiraishi, S.; Furuishi, T.; Ueda, H. Identification of Furosemide Photodegradation Products in Water-Acetonitrile Mixture. Chem. Pharm. Bull. (Tokyo) 2015, 63, 617–627. DOI: 10.1248/cpb.c15-00122.
  • Wang, J. L.; Xu, L. J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. DOI: 10.1080/10643389.2010.507698.
  • Wang, J.; Bai, Z. Fe-Based Catalysts for Heterogeneous Catalytic Ozonation of Emerging Contaminants in Water and Wastewater. Chem. Eng. J. 2017, 312, 79–98. DOI: 10.1016/j.cej.2016.11.118.
  • Wang, J. L.; Zhuan, R. Degradation of Antibiotics by Advanced Oxidation Processes: An Overview. Sci Total Environ. 2020, 701, 135023. DOI: 10.1016/j.scitotenv.2019.135023.
  • Wang, J. L.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. DOI: 10.1016/j.scitotenv.2019.135249.
  • Wang, J. L.; Wang, S. Reactive Species in Advanced Oxidation Processes: Formation, Identification and Reaction Mechanism. Chem. Eng. J. 2020, 401, 126158. DOI: 10.1016/j.cej.2020.126158.
  • Jia, Z.; Yujun, W.; Guangsheng, L. Adsorption of Diuretic Furosemide onto Chitosan Nanoparticles Prepared with a Water-in-Oil Nanoemulsion System. React. Funct. Polym. 2005, 65, 249–257.
  • Cychosz, K. A.; Matzger, A. J. Water Stability of Microporous Coordination Polymers and the Adsorption of Pharmaceuticals from Water. Langmuir 2010, 26, 17198–17202. DOI: 10.1021/la103234u.
  • Rahimi, M.; Damavandi, S.; Wadi, D.; Vada, M. Investigation of Langmuir, Freundlich and Temkin Isotherms Adsorption of Furosemide (Diuretic Drug) by Multi-Wall Carbon Nanotube. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 36–39.
  • Machado, A. I.; Dordio, A.; Fragoso, R.; Leitao, A. E.; Duarte, E. Furosemide Removal in Constructed Wetlands: Comparative Efficiency of LECA and Cork Granulates as Support Matrix. J. Environ. Manag. 2017, 203, 422–428.
  • Samah, A.; Sanchez-Martin, N.; Sebastian, M. J.; Valiente, R. M.; Lopez-Mesas, M. M. Molecularly Imprinted Polymer for the Removal of Diclofenac from Water: Synthesis and Characterization. Sci. Total Environ. 2018, 631–632, 1534–1543.
  • Lin, K. Y. A.; Yang, H.; Lee, W. D. Enhanced Removal of Diclofenac from Water Using a Zeolitic Imidazole Framework Functionalized with Cetyltrimethylammonium Bromide (CTAB). RSC Adv. 2015, 5, 81330–81340.
  • Dhaka, S.; Kumar, R.; Deep, A.; Kurade, M. B.; Ji, S. W.; Jeon, B. H. Metal–Organic Frameworks (MOFs) for the Removal of Emerging Contaminants from Aquatic Environments. Coord. Chem. Rev. 2019, 380, 330–352. DOI: 10.1016/j.ccr.2018.10.003.
  • Della Greca, M.; Iesce, M. R.; Previtera, L.; Rubino, M.; Temussi, F. A New Photoproduct of the Drug Furosemide in Aqueous Media. Environ. Chem. Lett. 2004, 2, 155–158. DOI: 10.1007/s10311-004-0080-9.
  • Lin, S.; Zhao, Y.; Yun, Y.-S. Highly Effective Removal of Nonsteroidal Anti-inflammatory Pharmaceuticals from Water by Zr(IV)-Based Metal-Organic Framework: Adsorption Performance and Mechanisms. ACS Appl. Mater Interfaces 2018, 10, 28076–28085. DOI: 10.1021/acsami.8b08596.
  • Rizzi, V.; Fini, P.; Fanelli, F.; Placido, T.; Semeraro, P.; Sibillano, T.; Fraix, A.; Sortino, S.; Agostiano, A.; Giannini, C.; Cosma, P. Molecular Interactions, Characterization and Photoactivity of Chlorophyll a/Chitosan/2-HP-β-Cyclodextrin Composite Films as Functional and Active Surfaces for ROS Production. Food Hydrocoll. 2016, 58, 98–112. DOI: 10.1016/j.foodhyd.2016.02.012.
  • Rizzi, V.; Romanazzi, F.; Gubitosa, J.; Fini, P.; Romita, R.; Agostiano, A.; Petrella, A.; Cosma, P. Chitosan Film as Eco-Friendly and Recyclable Bio-Adsorbent to Remove/Recover Diclofenac, Ketoprofen, and Their Mixture from Wastewater. Biomolecules 2019, 9, 571. DOI: 10.3390/biom9100571.
  • Wang, J. L.; Shuting Zhuang, S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. DOI: 10.1080/10643389.2017.1421845.
  • Wang, J. L.; Chen, C. Chitosan-Based Biosorbents: Modification and Application for Biosorption of Heavy Metals and Radionuclides. Bioresour. Technol. 2014, 160, 129–141. DOI: 10.1016/j.biortech.2013.12.110.
  • Gubitosa, J.; Rizzi, V.; Lopedota, A.; Fini, P.; Laurenzana, A.; Fibbi, G.; Fanelli, F.; Petrella, A.; Laquintana, V.; Denora, N.; et al. One Pot Environmental Friendly Synthesis of Gold Nanoparticles Using Punica Granatum Juice: A Novel Antioxidant Agent for Future Dermatological and Cosmetic Applications. J. Colloid. Interface Sci. 2018, 521, 50–61. DOI: 10.1016/j.jcis.2018.02.069.
  • Naveed, S.; Qamar, F.; Zainab, S. Simple UV Spectrophotometric Assay of Furosemide. JIPBS 2014, 01, 1–101. DOI: 10.4236/oalib.1100615.
  • Wang, J. L.; Xuan Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. DOI: 10.1016/j.jhazmat.2020.122156.
  • Park, Y.; Sun, Z.; Ayoko, G. A.; Frost, R. L. Bisphenol a Sorption by Organo-montmorillonite: Implications for the Removal of Organic Contaminants from Water. Chemosphere 2014, 107, 249–256. DOI: 10.1016/j.chemosphere.2013.12.050.
  • Antunes, M.; Esteves, V. I.; Guegan, R.; Crespo, J. S.; Fernandes, A. N.; Giovanela, M. Removal of Diclofenac Sodium from Aqueous Solution by Isabel Grape Bagasse. Chem. Eng. J. 2012, 192, 114– 121. DOI: 10.1016/j.cej.2012.03.062.
  • Klausner, E. A.; Lavy, E.; Stepensky, D.; Cserepes, E.; Barta, M.; Friedman, M.; Hoffman, A. Furosemide Pharmacokinetics and Pharmacodynamics following Gastroretentive Dosage Form Administration to Healthy Volunteers. J. Clin. Pharmacol. 2003, 43, 711–720.
  • Zhou, X.; Dong, C.; Yang, Z.; Tian, Z. Q.; Lu, L. S.; Yang, W. B.; Wang, Y. P.; Zhang, L. M.; Li, A. M.; Chen, J. Q. Enhanced Adsorption of Pharmaceuticals onto Core-Brush Shaped Aromatic Rings-Functionalized Chitosan Magnetic Composite Particles: Effects of Structural Characteristics of Both Pharmaceuticals and Brushes. J. Clean. Prod. 2018, 172, 1025–1034. DOI: 10.1016/j.jclepro.2017.10.207.
  • Shu, X. Z.; Zhu, K. J. The Influence of Multivalent Phosphate Structure on the Properties of Ionically Cross-Linked Chitosan Films for Controlled Drug Release. Eur. J. Pharm. Biopharm. 2002, 54, 235–243. DOI: 10.1016/s0939-6411(02)00052-8.
  • Zhang, Y.; Shen, Z.; Dai, C.; Zhou, X. Removal of Selected Pharmaceuticals from Aqueous Solution Using Magnetic Chitosan: Sorption Behavior and Mechanism. Environ. Sci. Pollut. Res. Int. 2014, 21, 12780–12789. DOI: 10.1007/s11356-014-3212-1.
  • Ramos, D. P.; Sarjinsky, S.; Alizadehgiashi, M.; Mobus, J.; Kumacheva, E. Polyelectrolyte vs Polyampholyte Behavior of Composite Chitosan/Gelatin Films. ACS Omega 2019, 4, 8795–8803. DOI: 10.1021/acsomega.9b00251.
  • Chen, Y. J.; Wang, F. H.; Duan, L. C.; Yang, H.; Gao, J. Tetracycline Adsorption onto Rice Husk Ash, an Agricultural Waste: Its Kinetic and Thermodynamic Studies. J. Mol. Liq. 2016, 222, 487–494. DOI: 10.1016/j.molliq.2016.07.090.
  • Sayğılı, H.; Güzel, F. Effective Removal of Tetracycline from Aqueous Solution Using Activated Carbon Prepared from Tomato (Lycopersicon esculentum Mill.) Industrial Processing Waste. Ecotoxicol. Environ. Saf. 2016, 131, 22–29. DOI: 10.1016/j.ecoenv.2016.05.001.
  • Zhang, Y. H.; Zhu, C. Q.; Liu, F. Q.; Yuan, Y.; Wu, H. D.; Li, A. M. Effects of Ionic Strength on Removal of Toxic Pollutants from Aqueous Media with Multifarious Adsorbents: A Review. Sci. Total Environ. 2019, 646, 265–279. DOI: 10.1016/j.scitotenv.2018.07.279.
  • Lan, Q. D.; Bassi, A. S.; Zhu, J. X.; Margaritis, A. A Modified Langmuir Model for the Prediction of the Effects of Ionic Strength on the Equilibrium Characteristics of Protein Adsorption onto Ion Exchange/Affinity Adsorbents. Chem. Eng. J. 2001, 81, 179–186. DOI: 10.1016/S1385-8947(00)00197-2.
  • Selmi, T.; Sanchez-Sanchez, A.; Gadonneix, P.; Jagiello, J.; Seffen, M.; Sammouda, H.; Celzard, A.; Fierro, V. Tetracycline Removal with Activated Carbons Produced by Hydrothermal Carbonisation of Agave Americana Fibres and Mimosa Tannin. Ind. Crops Prod. 2018, 115, 146–157. DOI: 10.1016/j.indcrop.2018.02.005.
  • Wang, J. L.; Xuan Guo, X. Adsorption Isotherm Models: Classification, Physical Meaning, Application and Solving Method. Chemosphere 2020, 258, 127279 DOI: 10.1016/j.chemosphere.2020.127279.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.