Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 2
273
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Removal efficiency of dissolved organic matter from secondary effluent by coagulation-flocculation processes

, , ORCID Icon, &
Pages 161-170 | Received 26 May 2020, Accepted 12 Nov 2020, Published online: 30 Dec 2020

References

  • Shon, H. K.; Vigneswaran, S.; Aim, R.; Ben; Ngo, H. H.; Kim, I. S.; Cho, J. Influence of Flocculation and Adsorption as Pretreatment on the Fouling of Ultrafiltration and Nanofiltration Membranes: Application with Biologically Treated Sewage Effluent. Environ. Sci. Technol. 2005, 39, 3864–3871. DOI: 10.1021/es040105s.
  • Dignac, M.-F.; Ginestet, P.; Rybacki, D.; Bruchet, A.; Urbain, V.; Scribe, P. Fate of Wastewater Organic Pollution during Activated Sludge Treatment: Nature of Residual Organic Matter. Water Res. 2000, 34, 4185–4194. DOI: 10.1016/S0043-1354(00)00195-0.
  • Guo, J.; Peng, Y.; Guo, J.; Ma, J.; Wang, W.; Wang, B. Dissolved Organic Matter in Biologically Treated Sewage Effluent (BTSE): Characteristics and Comparison. Desalination 2011, 278, 365–372. DOI: 10.1016/j.desal.2011.05.057.
  • Stumm, W.; Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Wiley: Hoboken, New Jersey, 1996; pp. 1022.
  • Jensen, J. N. A Problem-Solving Approach to Aquatic Chemistry. Wiley: Hoboken, New Jersey, 2003; pp. 585.
  • Clark, M. M. Transport Modeling for Environmental Engineers and Scientists. Wiley: Hoboken, New Jersey, 2009; pp. 630.
  • Letterman, R. D.; Yiacoumi, S. Coagulation and Flocculation. In Water Quality and Treatment: A Handbook on Drinking Water; Edzwald, J. K., Ed. American Water Works Association, American Society of Civil Engineers, McGraw-Hill: New York, NY, 2011; pp. 8.1–8.81.
  • Crittenden, J. C.; Trussell, R. R.; Hand, D. W.; Howe, K. J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design. John Wiley & Sons: Hoboken, New Jersey, 2012; pp. 1920.
  • Tchobanoglous, G.; Stensel, H. D.; Burton, F. L.; Tsuchihashi, R. Wastewater Engineering: Treatment and Resource Recovery. McGraw-Hill Book Company: New York, NY, 2014; pp. 2048.
  • Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment. IWA Publishing: London, 2006; pp. 450.
  • Jarusutthirak, C.; Amy, G. Understanding Soluble Microbial Products (SMP) as a Component of Effluent Organic Matter (EfOM). Water Res. 2007, 41, 2787–2793. DOI: 10.1016/j.watres.2007.03.005.
  • Her, N.; Amy, G.; McKnight, D.; Sohn, J.; Yoon, Y. Characterization of DOM as a Function of MW by Fluorescence EEM and HPLC-SEC Using UVA, DOC, and Fluorescence Detection. Water Res. 2003, 37, 4295–4303. DOI: 10.1016/S0043-1354(03)00317-8.
  • Bolto, B.; Abbt-Braun, G.; Dixon, D.; Eldridge, R.; Frimmel, F.; Hesse, S.; King, S.; Toifl, M. Experimental Evaluation of Cationic Polyelectrolytes for Removing Natural Organic Matter from Water. Water Sci. Technol. 1999, 40, 71–79. DOI: 10.2166/wst.1999.0445.
  • Knuutinen, J.; Virkki, L.; Mannila, P.; Mikkelson, P.; Paasivirta, J.; Herve, S. High-Performance Liquid Chromatographic Study of Dissolved Organic Matter in Natural Waters. Water Res. 1988, 22, 985–990. DOI: 10.1016/0043-1354(88)90145-5.
  • Yan, M.; Korshin, G.; Wang, D.; Cai, Z. Characterization of Dissolved Organic Matter Using High-Performance Liquid Chromatography (HPLC)-Size Exclusion Chromatography (SEC) with a Multiple Wavelength Absorbance Detector. Chemosphere 2012, 87, 879–885. DOI: 10.1016/j.chemosphere.2012.01.029.
  • Huang, H.; Sawade, E.; Cook, D.; Chow, C. W. K.; Drikas, M.; Jin, B. High-Performance Size Exclusion Chromatography with a Multi-Wavelength Absorbance Detector Study on Dissolved Organic Matter Characterisation along a Water Distribution System. J. Environ. Sci. (China) 2016, 44, 235–243. DOI: 10.1016/j.jes.2015.12.011.
  • González, O.; Justo, A.; Bacardit, J.; Ferrero, E.; Malfeito, J. J.; Sans, C. Characterization and Fate of Effluent Organic Matter Treated with UV/H2O2 and Ozonation. Chem. Eng. J. 2013, 226, 402–408. DOI: 10.1016/j.cej.2013.04.066.
  • Huber, S. A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of Aquatic Humic and Non-Humic Matter with Size-Exclusion Chromatography-Organic Carbon Detection-Organic Nitrogen Detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. DOI: 10.1016/j.watres.2010.09.023.
  • Allpike, B. P.; Heitz, A.; Joll, C. A.; Kagi, R. I.; Abbt-Braun, G.; Frimmel, F. H.; Brinkmann, T.; Her, N.; Amy, G. Size Exclusion Chromatography to Characterize DOC Removal in Drinking Water Treatment. Environ. Sci. Technol. 2005, 39, 2334–2342. DOI: 10.1021/es0496468.
  • Ibrahim, A.; Peltier, E.; Sturm, B. S. Halophilic and Nonhalophilic Aerobic Granular Sludge Formation in Hypersaline Synthetic Oilfield Produced Water. Proceedings of the Water Environment Federation. 2017, 16. DOI: 10.2175/193864717822155605.
  • Li, F.; Guo, H.; Zhou, X.; Zhao, K.; Shen, J.; Liu, F.; Wei, C. Impact of Natural Organic Matter on Arsenic Removal by Modified Granular Natural Siderite: Evidence of Ternary Complex Formation by HPSEC-UV-ICP-MS. Chemosphere 2017, 168, 777–785. DOI: 10.1016/j.chemosphere.2016.10.135.
  • Venkatesan, A. K.; Gan, W.; Ashani, H.; Herckes, P.; Westerhoff, P. Size Exclusion Chromatography with Online ICP-MS Enables Molecular Weight Fractionation of Dissolved Phosphorus Species in Water Samples. Water Res. 2018, 133, 264–271. DOI: 10.1016/j.watres.2018.01.048.
  • Reemtsma, T.; These, A. On-Line Coupling of Size Exclusion Chromatography with Electrospray Ionization-Tandem Mass Spectrometry for the Analysis of Aquatic Fulvic and Humic Acids. Anal. Chem. 2003, 75, 1500–1507. DOI: 10.1021/ac0261294.
  • Leenheer, J. A.; Croué, J. P. Characterizing Aquatic Dissolved Organic Matter. Environ. Sci. Technol. 2003, 37, 18A–26A. DOI: 10.1021/es032333c.
  • Leiviskä, T.; Nurmesniemi, H.; Pöykiö, R.; Rämö, J.; Kuokkanen, T.; Pellinen, J. Effect of Biological Wastewater Treatment on the Molecular Weight Distribution of Soluble Organic Compounds and on the Reduction of BOD, COD and P in Pulp and Paper Mill Effluent. Water Res. 2008, 42, 3952–3960. DOI: 10.1016/j.watres.2008.06.016.
  • Wang, Z.; Wu, Z. Distribution and Transformation of Molecular Weight of Organic Matters in Membrane Bioreactor and Conventional Activated Sludge Process. Chem. Eng. J. 2009, 150, 396–402. DOI: 10.1016/j.cej.2009.01.018.
  • APHA. Standard Methods for the Examination of Water and Wastewater. APHA: Washington, DC, 2005.
  • Amirtharajah, A.; Mills, K. M. Rapid-Mix Design for Mechanisms of Alum Coagulation. J. Am. Water Works Assoc. 1982, 74, 210–216. DOI: 10.1002/j.1551-8833.1982.tb04890.x.
  • Umar, M.; Roddick, F.; Fan, L. Comparison of Coagulation Efficiency of Aluminium and Ferric-Based Coagulants as Pre-Treatment for UVC/H2O2 Treatment of Wastewater RO Concentrate. Chem. Eng. J. 2016, 284, 841–849. DOI: 10.1016/j.cej.2015.08.109.
  • Amuda, O. S.; Amoo, I. A. Coagulation/Flocculation Process and Sludge Conditioning in Beverage Industrial Wastewater Treatment. J. Hazard. Mater. 2007, 141, 778–783. DOI: 10.1016/j.jhazmat.2006.07.044.
  • Jarvis, P.; Sharp, E.; Pidou, M.; Molinder, R.; Parsons, S. A.; Jefferson, B. Comparison of Coagulation Performance and Floc Properties Using a Novel Zirconium Coagulant against Traditional Ferric and Alum Coagulants. Water Res. 2012, 46, 4179–4187. DOI: 10.1016/j.watres.2012.04.043.
  • Licskó, I. Realistic Coagulation Mechanisms in the Use of Aluminium and Iron(III) Salts. Water Sci. Technol. 1997, 36, 103–110. DOI: 10.2166/wst.1997.0097.
  • Williams, R. L. Microelectrophoretic Studies of Coagulation with Aluminum Sulfate. J. Am. Water Works Assoc. 1965, 57, 801–810. DOI: 10.1002/j.1551-8833.1965.tb01465.x.
  • O’Melia, C. R.; Becker, W. C.; Au, K.-K. Removal of Humic Substances by Coagulation. Water Sci. Technol. 1999, 40, 47–54.
  • Slavik, I.; Müller, S.; Mokosch, R.; Azongbilla, J. A.; Uhl, W. Impact of Shear Stress and pH Changes on Floc Size and Removal of Dissolved Organic Matter (DOM). Water Res. 2012, 46, 6543–6553. DOI: 10.1016/j.watres.2012.09.033.
  • Gosetti, F.; Mazzucco, E.; Zampieri, D.; Gennaro, M. C. Signal Suppression/Enhancement in High-Performance Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 3929–3937. DOI: 10.1016/j.chroma.2009.11.060.
  • Kloepfer, A.; Quintana, J. B.; Reemtsma, T. Operational Options to Reduce Matrix Effects in Liquid Chromatography-Electrospray Ionisation-Mass Spectrometry Analysis of Aqueous Environmental Samples. J. Chromatogr. A 2005, 1067, 153–160. DOI: 10.1016/j.chroma.2004.11.101.
  • Raposo, F.; Barceló, D. Challenges and Strategies of Matrix Effects Using Chromatography-Mass Spectrometry: An Overview from Research versus Regulatory Viewpoints. TrAC Trends Anal. Chem. 2020, 134. DOI: 10.1016/j.trac.2020.116068.
  • Nanita, S. C.; Kaldon, L. G. Emerging Flow Injection Mass Spectrometry Methods for High-Throughput Quantitative Analysis. Anal. Bioanal. Chem. 2016, 408, 23–33. DOI: 10.1007/s00216-015-9193-1.
  • Edwards, M.; Benjamin, M. M. Transformation of NOM by Ozone and Its Effect on Iron and Aluminum Solubility. J. Am. Water Work. Assoc. 1992, 84, 56–66. DOI: 10.1002/j.1551-8833.1992.tb07376.x.
  • Bolto, B.; Abbt-Braun, G.; Dixon, D.; Eldridge, R.; Frimmel, F.; Hesse, S.; King, S.; Toifl, M. Experimental Evaluation of Cationic Polyelectrolytes for Removing Natural Organic Matter from Water. Water Sci. Technol. 1999, 40, 71–79.
  • Tran, N. H.; Ngo, H. H.; Urase, T.; Gin, K. Y. H. A Critical Review on Characterization Strategies of Organic Matter for Wastewater and Water Treatment Processes. Bioresour. Technol. 2015, 193, 523–533. DOI: 10.1016/j.biortech.2015.06.091.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.