Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 2
137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ecological risk assessment of trace metals in sediments under reducing conditions based on isotopically exchangeable pool

, , , &
Pages 171-180 | Received 31 Jul 2020, Accepted 21 Nov 2020, Published online: 24 Dec 2020

References

  • Lock, K.; Janssen, C. R. Ecotoxicity of Zinc in Spiked Artificial Soils versus Contaminated Field Soils. Environ. Sci. Technol. 2001, 35, 4295–4300. DOI: 10.1021/es0100219.
  • Du Laing, G.; Rinklebe, J.; Vandecasteele, B.; Meers, E.; Tack, F. M. G. Trace Metal Behaviour in Estuarine and Riverine Floodplain Soils and Sediments: A Review. Sci. Total Environ. 2009, 407, 3972–3985. DOI: 10.1016/j.scitotenv.2008.07.025.
  • Kongchum, M.; Materne, M. D.; Williamson, G. B.; Bissett, L. Effect of Elevation on Soil Properties in Reconstructed Back Barrier Island Coastal Marsh Using Dredged Materials. Wetlands 2017, 37, 301–311. DOI: 10.1007/s13157-016-0870-4.
  • Rakshith, S.; Singh, D. N. Utilization of Dredged Sediments: Contemporary Issues. J. Waterw. Port. Coast. Ocean Eng.2017, 143, 04016025. DOI: 10.1061/(ASCE)WW.1943-5460.0000376.
  • Blume, H. P.; Felix-Henningsen, P. Reductosols: Natural Soils and Technosols under Reducing Conditions without an Aquic Moisture Regime. J. Plant Nutr. Soil Sci. 2009, 172, 808–820. DOI: 10.1002/jpln.200800125.
  • Ferronato, C.; Vianello, G.; Antisari, L. V. Heavy Metal Risk Assessment after Oxidation of Dredged Sediments through Speciation and Availability Studies in the Reno River Basin, Northern Italy. J. Soils Sediments 2015, 15, 1235–1245. DOI: 10.1007/s11368-015-1096-4.
  • Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and Their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2010, 44, 15–23. DOI: 10.1021/es9026248.
  • Vink, J. P. M.; van Zomeren, A.; Dijkstra, J. J.; Comans, R. N. J. When Soils Become Sediments: Large-Scale Storage of Soils in Sandpits and Lakes and the Impact of Reduction Kinetics on Heavy Metals and Arsenic Release to Groundwater. Environ. Pollut. 2017, 227, 146–156. DOI: 10.1016/j.envpol.2017.04.016.
  • Rinklebe, J.; Shaheen, S. M. Redox Chemistry of Nickel in Soils and Sediments: A Review. Chemosphere 2017, 179, 265–278. DOI: 10.1016/j.chemosphere.2017.02.153.
  • Mao, L.; Liu, L.; Yan, N.; Li, F.; Tao, H.; Ye, H.; Wen, H. Factors Controlling the Accumulation and Ecological Risk of Trace Metal(loid)s in River Sediments in Agricultural Field. Chemosphere 2020, 243, 125359. DOI: 10.1016/j.chemosphere.2019.125359.
  • Pignotti, E.; Guerra, R.; Covelli, S.; Fabbri, E.; Dinelli, E. Sediment Quality Assessment in a Coastal Lagoon (Ravenna, NE Italy) Based on SEM-AVS and Sequential Extraction Procedure. Sci. Total Environ. 2018, 635, 216–227. DOI: 10.1016/j.scitotenv.2018.04.093.
  • Shaheen, S. M.; Rinklebe, J. Geochemical Fractions of Chromium, Copper, and Zinc and Their Vertical Distribution in Floodplain Soil Profiles along the Central Elbe River, Germany. Geoderma 2014, 228-229, 142–159. DOI: 10.1016/j.geoderma.2013.10.012.
  • Mao, L.; Bailey, E. H.; Chester, J.; Dean, J.; Ander, L. E.; Chenery, S. R.; Young, S. D. Lability of Pb in Soil: effects of Soil Properties and Contaminant Source. Environ. Chem. 2014, 11, 690–701. DOI: 10.1071/EN14100.
  • Nemati, K.; Bakar, N. K. A.; Abas, M. R.; Sobhanzadeh, E. Speciation of Heavy Metals by Modified BCR Sequential Extraction Procedure in Different Depths of Sediments from Sungai Buloh, Selangor, Malaysia. J. Hazard. Mater. 2011, 192, 402–410. DOI: 10.1016/j.jhazmat.2011.05.039.
  • Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy Metal Distribution and Chemical Speciation in Tailings and Soils around a Pb-Zn Mine in Spain. J. Environ. Manage. 2009, 90, 1106–1116. DOI: 10.1016/j.jenvman.2008.04.007.
  • Izquierdo, M.; Impa, S. M.; Johnson-Beebout, S. E.; Weiss, D. J.; Kirk, G. J. D. Measurement of Isotopically-Exchangeable Zn in Zn-Deficient Paddy Soil. Eur. J. Soil Sci. 2016, 67, 51–59. DOI: 10.1111/ejss.12303.
  • Bacon, J. R.; Davidson, C. M. Is There a Future for Sequential Chemical Extraction? Analyst 2008, 133, 25–46. DOI: 10.1039/b711896a.
  • Mehlhorn, J.; Besold, J.; Pacheco, J. S. L.; Gustafsson, J. P.; Kretzschmar, R.; Planer-Friedrich, B. Copper Mobilization and Immobilization along an Organic Matter and Redox Gradient-Insights from a Mofette Site. Environ. Sci. Technol. 2018, 52, 13698–13707. DOI: 10.1021/acs.est.8b02668.
  • Flynn, E. D.; Catalano, J. G. Reductive Transformations of Layered Manganese Oxides by Small Organic Acids and the Fate of Trace Metals. Geochim. Cosmochim. Acta 2019, 250, 149–172. DOI: 10.1016/j.gca.2019.02.006.
  • ThomasArrigo, L. K.; Byrne, J. M.; Kappler, A.; Kretzschmar, R. Impact of Organic Matter on Iron(II)-Catalyzed Mineral Transformations in Ferrihydrite-Organic Matter Coprecipitates. Environ. Sci. Technol. 2018, 52, 12316–12326. DOI: 10.1021/acs.est.8b03206.
  • Hamon, R. E.; Parker, D. R.; Lombi, E. Advances Inisotopic Dilution Techniques in Trace Element Research: A Review of Methodologies, Benefits, and Limitations. In Advances in Agronomy, Academic Press Inc. U.S.A. Sparks, D. L., Ed. 2008; Vol. 99, pp 289–343. DOI: 10.1016/S0065-2113(08)00406-9.
  • Degryse, F.; Smolders, E.; Parker, D. R. Partitioning of Metals (Cd, Co, Cu, Ni, Pb, Zn) in Soils: concepts, Methodologies, Prediction and Applications - A Review. Eur. J. Soil Sci. 2009, 60, 590–612. DOI: 10.1111/j.1365-2389.2009.01142.x.
  • Smolders, E.; Brans, K.; Foldi, A.; Merckx, R. Cadmium Fixation in Soils Measured by Isotopic Dilution. Soil Sci. Soc. Am. J. 1999, 63, 78–85. DOI: 10.2136/sssaj1999.03615995006300010013x.
  • Young, S. D.; Tye, A.; Carstensen, A.; Resende, L.; Crout, N. Methods for Determining Labile Cadmium and Zinc in Soil. Eur. J. Soil Sci. 2000, 51, 129–136. DOI: 10.1046/j.1365-2389.2000.00286.x.
  • Izquierdo, M.; Tye, A. M.; Chenery, S. R. Using Isotope Dilution Assays to Understand Speciation Changes in Cd, Zn, Pb and Fe in a Soil Model System under Simulated Flooding Conditions. Geoderma 2017, 295, 41–52. DOI: 10.1016/j.geoderma.2017.02.006.
  • Marzouk, E. R. E. Using Multi-Element Stable Isotope Dilution to Quantify Metal Reactivity in Soil. University of Nottingham, 2012.
  • Kumar, M. Understanding the Remobilization of Copper, Zinc, Cadmium and Lead Due to Ageing through Sequential Extraction and Isotopic Exchangeability. Environ. Monit. Assess. 2016, 188, 10. DOI: 10.1007/s10661-016-5379-z.
  • Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Potential Mobility of Heavy Metals through Coupled Application of Sequential Extraction and Isotopic Exchange: Comparison of Leaching Tests Applied to Soil and Soakaway Sediment. Chemosphere 2013, 90, 796–804. DOI: 10.1016/j.chemosphere.2012.09.082.
  • Wang, J.; Chen, Z.-L.; Wang, C.; Ye, M.-W.; Shen, J.; Nie, Z.-L. Heavy Metals Accumulation in River Sediments of Chongming Island, Shanghai City, and Its Environmental Risk. Ying Yong Sheng Tai Xue Bao 2007, 18, 1518–1522.
  • Ure, A. M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediment – An account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. DOI: 10.1080/03067319308027619.
  • Atkinson, N. R.; Bailey, E. H.; Tye, A. M.; Breward, N.; Young, S. D. Fractionation of Lead in Soil by Isotopic Dilution and Sequential Extraction. Environ. Chem. 2011, 8, 493–500. DOI: 10.1071/EN11020.
  • Mao, L.; Young, S. D.; Tye, A. M.; Bailey, E. H. Predicting Trace Metal Solubility and Fractionation in Urban Soils from Isotopic Exchangeability. Environ. Pollut. 2017, 231, 1529–1542. DOI: 10.1016/j.envpol.2017.09.013.
  • Thomas, R. How to Select an ICP-Mass Spectrometer: Some Important Analytical Considerations. In Practical Guide to ICP-MS: A Tutorial for Beginners, 2nd ed.; Thomas, R., Ed. CRC Press: Boca Raton; London, 2008; pp xxv. 347 p.
  • Marzouk, E. R.; Chenery, S. R.; Young, S. D. Measuring Reactive Metal in Soil: A Comparison of Multi-Element Isotopic Dilution and Chemical Extraction. Eur. J. Soil Sci. 2013, 64, 526–536. DOI: 10.1111/ejss.12043.
  • Gabler, H. E.; Bahr, A.; Mieke, B. Determination of the Interchangeable Heavy-Metal Fraction in Soils by Isotope Dilution Mass Spectrometry. Fresenius J. Anal. Chem. 1999, 365, 409–414. DOI: 10.1007/s002160051632.
  • He, Z. F., Geochemical background values of sediments in the Yangtze Estuary and offshore marine areas. Shanghai Land Resour 2018, 39, 5.
  • Yu, T.; Zhang, Y.; Meng, W.; Hu, X. N., Characterization of Heavy Metals in Water and Sediments in Taihu Lake, China. Environ. Monitor. Assess. 2012, 184, 4367–4382.
  • Long, E. R.; Macdonald, D. D.; Smith, S. L.; Calder, F. D. Incidence of Adverse Biological Effects within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environ. Manag. 1995, 19, 81–97. DOI: 10.1007/BF02472006.
  • Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. DOI: 10.1016/0043-1354(80)90143-8.
  • Tang, Z.; Chai, M.; Cheng, J.; Jin, J.; Yang, Y.; Nie, Z.; Huang, Q.; Li, Y. Contamination and Health Risks of Heavy Metals in Street Dust from a Coal-Mining City in Eastern China. Ecotoxicol. Environ. Saf. 2017, 138, 83–91. DOI: 10.1016/j.ecoenv.2016.11.003.
  • Birch, G. F. A Review of Chemical-Based Sediment Quality Assessment Methodologies for the Marine Environment. Mar. Pollut. Bull. 2018, 133, 218–232. DOI: 10.1016/j.marpolbul.2018.05.039.
  • Fan, W.; Xu, Z.; Wang, W.-X. Metal Pollution in a Contaminated Bay: Relationship between Metal Geochemical Fractionation in Sediments and Accumulation in a Polychaete. Environ. Pollut. 2014, 191, 50–57. DOI: 10.1016/j.envpol.2014.04.014.
  • Romkens, P. F.; Guo, H. Y.; Chu, C. L.; Liu, T. S.; Chiang, C. F.; Koopmans, G. F. Characterization of Soil Heavy Metal Pools in Paddy Fields in Taiwan: chemical Extraction and Solid-Solution Partitioning. J. Soils Sediments 2009, 9, 216–228. DOI: 10.1007/s11368-009-0075-z.
  • Ahnstrom, Z. A. S.; Parker, D. R. Cadmium Reactivity in Metal-Contaminated Soils Using a Coupled Stable Isotope Dilution-Sequential Extraction Procedure. Environ. Sci. Technol. 2001, 35, 121–126. DOI: 10.1021/es001350o.
  • Sakan, S. M.; Sakan, N. M.; ĐOrĐEviĆ, D. S. Trace Element Study in ∼ Tisa River and Danube Alluvial Sediment in Serbia. Int. J. Sediment Res. 2013, 28, 234–245. DOI: 10.1016/S1001-6279(13)60034-7.
  • Mao, L.; Ye, H.; Li, F.; Tao, H.; Shi, L.; Chen, L.; Shi, W.; Yan, G.; Chen, H. Source-Oriented Variation in Trace Metal Distribution and Fractionation in Sediments from Developing Aquaculture Area – A Case Study in South Hangzhou Bay, China. Mar. Pollut. Bull. 2017, 125, 389–398. DOI: 10.1016/j.marpolbul.2017.09.046.
  • Kelderman, P.; Osman, A. A. Effect of Redox Potential on Heavy Metal Binding Forms in Polluted Canal Sediments in Delft (The Netherlands). Water Res. 2007, 41, 4251–4261. DOI: 10.1016/j.watres.2007.05.058.
  • De Jonge, M.; Teuchies, J.; Meire, P.; Blust, R.; Bervoets, L. The Impact of Increased Oxygen Conditions on Metal-Contaminated Sediments Part I: Effects on Redox Status, Sediment Geochemistry and Metal Bioavailability. Water Res. 2012, 46, 2205–2214. DOI: 10.1016/j.watres.2012.01.052.
  • Buekers, J.; Amery, F.; Maes, A.; Smolders, E. Long-Term Reactions of Ni, Zn and Cd with Iron Oxyhydroxides Depend on Crystallinity and Structure and on Metal Concentrations. Eur. J. Soil Sci. 2008, 59, 706–715. DOI: 10.1111/j.1365-2389.2008.01028.x.
  • Guo, T.; DeLaune, R. D.; Patrick, W. H. The Influence of Sediment Redox Chemistry on Chemically Active Forms of Arsenic, Cadmium, Chromium, and Zinc in Estuarine Sediment. Environ. Int. 1997, 23, 305–316.
  • Izquierdo, M.; Tye, A. M.; Chenery, S. R. Sources, Lability and Solubility of Pb in Alluvial Soils of the River Trent Catchment, U.K. Sci. Total Environ. 2012, 433, 110–122. DOI: 10.1016/j.scitotenv.2012.06.039.
  • Degryse, F.; Waegeneers, N.; Smolders, E. Labile Lead in Polluted Soils Measured by Stable Isotope Dilution. Eur. J. Soil Sci. 2007, 58, 1–7. DOI: 10.1111/j.1365-2389.2005.00788.x.
  • Matong, J. M.; Nyaba, L.; Nomngongo, P. N. Fractionation of Trace Elements in Agricultural Soils Using Ultrasound Assisted Sequential Extraction Prior to Inductively Coupled Plasma Mass Spectrometric Determination. Chemosphere 2016, 154, 249–257. DOI: 10.1016/j.chemosphere.2016.03.123.
  • Ke, X.; Gui, S. F.; Huang, H.; Zhang, H. J.; Wang, C. Y.; Guo, W. Ecological Risk Assessment and Source Identification for Heavy Metals in Surface Sediment from the Liaohe River Protected Area, China. Chemosphere 2017, 175, 473–481. DOI: 10.1016/j.chemosphere.2017.02.029.
  • Tye, A. M.; Young, S. D.; Crout, N. M. J.; Zhang, H.; Preston, S.; Barbosa-Jefferson, V. L.; Davison, W.; McGrath, S. P.; Paton, G. I.; Kilham, K.; Resende, L. Predicting the Activity of Cd2+ and Zn2+ in Soil Pore Water from the Radio-Labile Metal Fraction. Geochim. Cosmochim. Acta 2003, 67, 375–385. DOI: 10.1016/S0016-7037(02)01138-9.
  • Gao, X. L.; Zhou, F. X.; Chen, C. T. A. Pollution Status of the Bohai Sea: An Overview of the Environmental Quality Assessment Related Trace Metals. Environ. Int. 2014, 62, 12–30. DOI: 10.1016/j.envint.2013.09.019.
  • Yu, K.; Böhme, F.; Rinklebe, J.; Neue, H.-U.; DeLaune, R. D. Major Biogeochemical Processes in soils - A Microcosm Incubation from Reducing to Oxidizing Conditions. Soil Sci. Soc. Am. J. 2007, 71, 1406–1417. DOI: 10.2136/sssaj2006.0155.
  • Mansfeldt, T. Redox Potential of Bulk Soil and Soil Solution Concentration of Nitrate, Manganese, Iron, and Sulfate in Two Gleysols. J. Plant Nutr. Soil Sci. 2004, 167, 7–16. DOI: 10.1002/jpln.200321204.
  • Gambrell, R. P.; Wiesepape, J. B.; Patrick, W. H.; Duff, M. C. The Effects of pH, Redox, and Salinity on Metal Release from a Contaminated Sediment. Water Air Soil Pollut. 1991, 57, 359–367.
  • Ajmone-Marsan, F.; Padoan, E.; Madrid, F.; Vrščaj, B.; Biasioli, M.; Davidson, C. M. Metal Release under Anaerobic Conditions of Urban Soils of Four European Cities. Water Air Soil Pollut. 2019, 230, 53. DOI: 10.1007/s11270-019-4101-5.
  • Furman, O.; Strawn, D. G.; McGeehan, S. Sample Drying Effects on Lead Bioaccessibility in Reduced Soil. J. Environ. Qual. 2007, 36, 899–903. DOI: 10.2134/jeq2006.0340.
  • Claff, S. R.; Burton, E. D.; Sullivan, L. A.; Bush, R. T. Effect of Sample Pretreatment on the Fractionation of Fe, Cr, Ni, Cu, Mn, and Zn in Acid Sulfate Soil Materials. Geoderma 2010, 159, 156–164. DOI: 10.1016/j.geoderma.2010.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.