Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 3
250
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Utilization of MWCNTs/Al2O3 as adsorbent for ciprofloxacin removal: equilibrium, kinetics and thermodynamic studies

ORCID Icon &
Pages 324-333 | Received 05 Feb 2020, Accepted 18 Dec 2020, Published online: 27 Jan 2021

References

  • Jiang, W. T.; Chang, P. H.; Wang, Y. S.; Tsai, Y. Removal of Ciprofloxacin from Water by Birnessite. J. Hazard. Mater. 2013, 250, 362–369.
  • Carabineiro, S. A. C.; Thavorn-Amornsri, T.; Pereira, M. F. R.; Serp, P.; Figueiredo, J. L. Comparison between Activated Carbon, Carbon Xerogel and Carbon Nanotubes for the Adsorption of the Antibiotic Ciprofloxacin. Catal. Today 2012, 186, 29–34. DOI: 10.1016/j.cattod.2011.08.020.
  • Choi, K. J.; Kim, S. G.; Kim, S. H. Removal of Antibiotics by Coagulation and Granular Activated Carbon Filtration. J. Hazard. Mater. 2008, 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.
  • Wang, L.; Chen, G.; Ling, C.; Zhang, J.; Szerlag, K. Adsorption of Ciprofloxacin on to Bamboo Charcoal: Effects of pH, Salinity, Cations, and Phosphate. Environ. Prog. Sustainable Energy 2017, 36, 1108–1115. DOI: 10.1002/ep.12579.
  • Naghdi, M.; Taheran, M.; Brar, S. K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R. Y. Kermanshahi-Pour, K. Biotransformation of Carbamazepine by Laccase-Mediator System: Kinetics, by-Products and Toxicity Assessment. Proc. Biochem. 2018, 67, 147–154. DOI: 10.1016/j.procbio.2018.02.009.
  • Parsa, J. B.; Panah, T. M.; Chianeh, F. N. Removal of Ciprofloxacin from Aqueous Solution by Continuous Flow Electro-Coagulation Process. Korean J. Chem. Eng. 2016, 33, 893–901. DOI: 10.1007/s11814-015-0196-6.
  • Ahmadi, S.; Banach, A.; Kord, M.; Mostafapour, F. Study Survey of Cupric Oxide Nanoparticles in Removal Efficiency of Ciprofloxacin Antibiotic from Aqueous Solution: Adsorption Isotherm Study. Desal. Water Treat. 2017, 89, 297–303.
  • Peng, X.; Hu, F.; Dai, H.; Xiong, Q. Study of the Adsorption Mechanism of Ciprofloxacin Antibiotics onto Graphitic Ordered Mesoporous Carbons. J. Taiwan Inst. Chem. Eng. 2016, 8, 1–10.
  • El-Shafey, H.; Al-Lawati, A. S.; Al-Sumri, D. Ciprofloxacin Adsorption from Aqueous Solution onto Chemically Prepared Carbon from Date Palm Leaflets. J. Environ. Sci. 2012, 24, 1579–1586. DOI: 10.1016/S1001-0742(11)60949-2.
  • Carvalho, C. O.; Rodrigues, D. L. C.; Lima, E. C.; Umpierres, C. S.; Chaguezac, D. F. C.; Machado, F. M. Kinetic, Equilibrium, and Thermodynamic Studies on the Adsorption of Ciprofloxacin by Activated Carbon Produced from Jerivá (Syagrus romanzoffiana). Environ. Sci. Pollut. Res. Int. 2019, 26, 4690–4702.
  • Ahmed, M. J.; Theydan, S. K. Fluoroquinolones Antibiotics Adsorption onto Microporous Activated Carbon from Lignocellulosic Biomass by Microwave Pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. DOI: 10.1016/j.jtice.2013.05.014.
  • Malakootian, M.; Nasiri, A.; Asadipour, A.; Kargar, E. Facile and Green Synthesis of ZnFe2O4@CMC as a New Magnetic Nanophotocatalyst for Ciprofloxacin Degradation from Aqueous Media. Proc. Safety Environ. Prot. 2019, 129, 138–151. DOI: 10.1016/j.psep.2019.06.022.
  • Labrada, I. S.; Cuello, K. Z.; Sánchez, D. R. A.; Batle, M. G.; Manero, M.-H.; Barthe, L.; Jáuregui-Haza, U. J. Optimization of Ciprofloxacin Degradation in Wastewater by Homogeneous Sono-Fenton Process at High Frequency. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2018, 53, 1139–1148. DOI: 10.1080/10934529.2018.1530177.
  • Ji, L.; Chen, W.; Duan, L.; Zhu, D.; Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study Using Activated Carbon and Graphite as Adsorbents. Environ. Sci. Technol. 2009, 43, 2322–2327. DOI: 10.1021/es803268b.
  • Li, J.; Zhang, Y.; Ping, Z.; Li, M.; Zhang, Q. Synthesis and Endotoxin Removal Properties of a Novel Affinity Sorbent with Poly(1-Vinylimidazole) as the Ligand. Proc. Biochem. 2011, 46, 1462–1468. DOI: 10.1016/j.procbio.2011.03.019.
  • Peterson, J. W.; Petrasky, L. J.; Seymour, M. D.; Burkhart, R. S.; Schuiling, A. B. Adsorption and Breakdown of Penicillin Antibiotic in the Presence of Titanium Oxide Nanoparticles in Water. Chemosphere 2012, 87, 911–917. DOI: 10.1016/j.chemosphere.2012.01.044.
  • Chang, P. H.; Li, Z.; Jean, J. S.; Jiang, W. T.; Wang, C. J.; Lin, K. H. Adsorption of Tetracycline on 2:1 Layered Non-Swelling Clay Mineral Illite. Appl. Clay Sci. 2012, 67, 158–163.
  • Yu, R.; Yu, X.; Xue, B.; Liao, J.; Zhu, W.; Tian, S. Adsorption of Chlortetracycline from Aquaculture Wastewater Using Modified Zeolites. J. Environ. Sci. Health 2020, 10.1080/10934529.2020.1717275.
  • Mohammadi, A. S.; Sardar, M. The Removal of Penicillin G from Aqueous Solutions Using Chestnut Shell Modified with H2SO4: Isotherm and Kinetic Study. J. Health Environ. 2012, 6, 497–508.
  • Rahardjo, A. K.; Susanto, M. J. J.; Kurniawan, A.; Indraswati, N.; Ismadji, S. Modified Ponorogo Bentonite for the Removal of Ampicillin from Wastewater. J. Hazard. Mater. 2011, 190, 1001–1008. DOI: 10.1016/j.jhazmat.2011.04.052.
  • Balarak, D.; Mostafapour, K. Photocatalytic Degradation of Amoxicillin Using UV/Synthesized NiO from Pharmaceutical Wastewater. Indones. J. Chem. 2019, 19, 211–218. DOI: 10.22146/ijc.33837.
  • Li, S.; Zhang, X.; Huang, Y. Zeolitic Imidazolate Framework-8 Derived Nanoporous Carbon as an Effective and Recyclable Adsorbent for Removal of Ciprofloxacin Antibiotics from Water. J. Hazard. Mater. 2017, 321, 711–719. DOI: 10.1016/j.jhazmat.2016.09.065.
  • Yaghmaeian, K.; Moussavi, G.; Alahabadi, A. Removal of Amoxicillin from Contaminated Water Using NH4Cl-Activated Carbon: Continuous Flow Fixed-Bed Adsorption and Catalytic Ozonation Regeneration. Chem. Eng. J. 2014, 236, 538–544. DOI: 10.1016/j.cej.2013.08.118.
  • Ding, R.; Zhang, P.; Seredych, M.; Bandosz, T. J. Removal of Antibiotics from Water Using Sewage Sludge- and Waste Oil Sludge-Derived Adsorbents. Water Res. 2012, 90, 40–46.
  • Bui, T. X.; Choi, H. Adsorptive Removal of Selected Pharmaceuticals by Mesoporous Silica SBA-15. J. Hazard. Mater. 2009, 168, 602–608. DOI: 10.1016/j.jhazmat.2009.02.072.
  • Balarak, D.; Azarpira, H.; Mostafapour, F. K. Adsorption Isotherm Studies of Tetracycline Antibiotics from Aqueous Solutions by Maize Stalks as a Cheap Biosorbent. Int. J. Pharm. Technol. 2016, 8, 16664–16675.
  • Mahvi, A. H.; Mostafapour, F. K. Biosorption of Tetracycline from Aqueous Solution by Azolla filiculoides: Equilibrium Kinetic and Thermodynamics Studies. Fresenius Environ. Bull. 2018, 27, 5759–5767.
  • To, M. H.; Hadi, P.; Hui, D. C. W.; Lin, C. S. K.; McKay, G. Mechanistic Study of Atenolol, Acebutolol and Carbamazepine Adsorption on Waste Biomass Derived Activated Carbon. J. Mol. Liq. 2017, 241, (386–398. DOI: 10.1016/j.molliq.2017.05.037.
  • Moussavi, G.; Alahabadi, A.; Yaghmaeian, K.; Eskandari, M. Preparation, Characterization and Adsorption Potential of the NH4Cl-Induced Activated Carbon for the Removal of Amoxicillin Antibiotic from Water. Chem. Eng. J. 2013, 217, 119–128. DOI: 10.1016/j.cej.2012.11.069.
  • Kerkez-Kuyumcu, Ö.; Bayazit, ŞS.; Salam, M. A. Antibiotic Amoxicillin Removal from Aqueous Solution Using Magnetically Modified Graphene Nanoplatelets. J. Ind. Eng. Chem. 2016, 35, 225–234.
  • Kim, S. H.; Shon, H. K.; Ngo, H. H. Adsorption Characteristics of Antibiotics Trimethoprim on Powdered and Granular Activated Carbon. J. Ind. Eng. Chem. 2010, 16, 344–349. DOI: 10.1016/j.jiec.2009.09.061.
  • Kumar, R.; Singh, R. K.; Singh, D. P.; Vaz, A. R.; Yadav, R. R.; Rout, C. S.; Moshkalev, S. A. Synthesis of Self-Assembled and Hierarchical palladium-CNTs-Reduced Graphene Oxide Composites for Enhanced Field Emission Properties. Mater. Des. 2017, 122, 110–117. DOI: 10.1016/j.matdes.2017.02.089.
  • Kumar, R.; Singh, R. K.; Dubey, P. K.; Singh, D. P.; Yadav, R. M. Self-Assembled Hierarchical Formation of Conjugated 3D Cobalt Oxide Nanobead-CNT-Graphene Nanostructure Using Microwaves for High-Performance Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2015, 7, 15042–15051. DOI: 10.1021/acsami.5b04336.
  • Zare, K.; Gupta, V. K.; Moradi, O.; Makhlouf, A. S. H.; Sillanpää, M.; Nadagouda, M. N.; Sadegh, H.; Shahryari-Ghoshekandi, R.; Pal, A.; Wang, Z-j.; et al. Comparative Study on the Basis of Adsorption Capacity between CNTs and Activated Carbon as Adsorbents for Removal of Noxious Synthetic Dyes: A Review. J. Nanostruct. Chem. 2015, 5, 227–236. DOI: 10.1007/s40097-015-0158-x.
  • Balarak, D.; Mahdavi, Y.; Mostafapour, F. K. Application of Alumina-Coated Carbon Nanotubes in Removal of Tetracycline from Aqueous Solution. BJPR. 2016, 12, 1–11. DOI: 10.9734/BJPR/2016/26937.
  • Upadhyayula, V. K. K.; Deng, S.; Mitchell, M. C.; Smith, G. F. Application of Carbon Nanotube Technology for Removal of Contaminants in Drinking Water: A Review. Sci. Total Environ. 2009, 408, 1–13. DOI: 10.1016/j.scitotenv.2009.09.027.
  • Qu, S.; Wang, J.; Kong, J.; Yang, P.; Chen, G. Magnetic Loading of Carbon Nanotube/Nano-Fe3O4 Composite for Electrochemical Sensing. Talanta 2007, 71, 1096–1102. DOI: 10.1016/j.talanta.2006.06.003.
  • Moradi, O.; Fakhri, A.; Adami, S.; Adami, S. Isotherm, Thermodynamic, Kinetics, and Adsorption Mechanism Studies of Ethidium Bromide by Single-Walled Carbon Nanotube and Carboxylate Group Functionalized Single-Walled Carbon Nanotube. J. Coll. Interf. Sci. 2013, 395, 224–229. DOI: 10.1016/j.jcis.2012.11.013.
  • Balarak, D.; Mostafapour, F. K.; Bazrafshan, E.; Saleh, T. A. Studies on the Adsorption of Amoxicillin on Multi-Wall Carbon Nanotubes. Water Sci. Technol. 2017, 75, 1599–1606. DOI: 10.2166/wst.2017.025.
  • Zhang, L.; Song, X.; Liu, X.; Yang, L.; Pan, F.; Lv, J. Studies on the Removal of Tetracycline by Multi-Walled Carbon Nanotubes. Chem. Eng. J. 2011, 178, 26–33. DOI: 10.1016/j.cej.2011.09.127.
  • Gupta, V. K.; Agarwal, S.; Saleh, T. A. Synthesis and Characterization of Alumina-Coated Carbon Nanotubes and Their Application for Lead Removal. J. Hazard. Mater. 2011, 185, 17–23.
  • He, C. N.; Tian, F.; Liu, S. J. A Carbon Nanotube/Alumina Network Structure for Fabricating Alumina Matrix Composites. J. Alloys Compds. 2009, 478, 816–819.
  • Zha, S. X.; Zhou, Y.; Jin, X.; Chen, Z. The Removal of Amoxicillin from Wastewater Using Organobentonite. J. Environ. Manage. 2013, 129, 569–576. DOI: 10.1016/j.jenvman.2013.08.032.
  • Lagergren, S. Zur Theorie Der Sogenannten Adsorption Geloster Stoffe. Kungliga Sevenska Vetenskapsakademiens, Handlingar 1898, 2, 1–39.
  • Guler, U. A.; Sarioglu, M. Removal of Tetracycline from Wastewater Using Pumice Stone: Equilibrium, Kinetic and Thermodynamic Studies. J. Environ. Health Sci. Eng. 2014, 12, 79–87. DOI: 10.1186/2052-336X-12-79.
  • Azarpira, H.; Mahdavi, Y.; Khaleghi, O. Thermodynamic Studies on the Removal of Metronidazole Antibiotic by Multi-Walled Carbon Nanotubes. Der Pharmacia Lettre 2016, 8, 107–113.
  • Ho, Y. S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Proc. Biochem. 1999, 34, 451–465. DOI: 10.1016/S0032-9592(98)00112-5.
  • McKay, G.; Ho, Y. S. A Kinetic Study of Dye Sorption by Biosorbent Waste Product Pith. Res. Cons. Recycl. 1999, 25, 171–193.
  • Carabineiro, A.; Thavorn-Amornsri, T.; Pereira, F.; Figueiredo, L. Adsorption of Ciprofloxacin on Surface-Modified Carbon Materials. Water Res. 2011, 45, 4583–4591. DOI: 10.1016/j.watres.2011.06.008.
  • Yu, F.; Li, Y.; Han, S.; Jie, Z.; Ma, J. Adsorptive Removal of Antibiotics from Aqueous Solution Using Carbon Materials. Chemosphere 2016, 153, 365–385. DOI: 10.1016/j.chemosphere.2016.03.083.
  • Liu, Z.; Xie, H.; Zhang, J.; Zhang, C. Sorption Removal of Cephalexin by HNO3 and H2O2 Oxidized Activated Carbons. Sci. China Chem. 2012, 55, 1959–1967. DOI: 10.1007/s11426-011-4488-3.
  • Dutta, M.; Dutta, N. N.; Bhattacharya, K. G. Aqueous Phase Adsorption of Certain Beta-Lactam Antibiotics onto Polymeric Resins and Activated Carbon. Sep. Purif. Technol. 1999, 16, 213–224. DOI: 10.1016/S1383-5866(99)00011-8.
  • Erşan, M.; Bağda, E.; Bağda, E. Investigation of Kinetic and Thermodynamic Characteristics of Removal of Tetracycline with Sponge like, Tannin Based Cryogels. Coll. Surfaces B: Biointerfaces 2013, 104, 75–82. DOI: 10.1016/j.colsurfb.2012.11.034.
  • Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J.; Shah, S. M.; Su, X. Adsorption and Removal of Tetracycline Antibiotics from Aqueous Solution by Graphene Oxide. J. Coll. Interf. Sci. 2012, 36, 540–546.
  • Choy, K. K. H.; McKay, G. Sorption of Cadmium, Copper, and Zinc Ions onto Bone Char Using Crank Diffusion Model. Chemosphere 2005, 60, 1141–1150. DOI: 10.1016/j.chemosphere.2004.12.041.
  • Balarak, D.; Azarpira, H. Rice Husk as a Biosorbent for Antibiotic Metronidazole Removal: Isotherm Studies and Model Validation. Int. J. Chem. Tech. Res. 2016, 9, 566–573.
  • Liu, W.; Zhang, J.; Zhang, C.; Ren, L. Sorption of Norfloxacin by Lotus Stalk-Based Activated Carbon and Iron-Doped Activated Alumina: mechanisms, Isotherms and Kinetics. Chem. Eng. J. 2011, 171, 431–438. DOI: 10.1016/j.cej.2011.03.099.
  • Hu, D.; Wang, L. Adsorption of Amoxicillin onto Quaternized Cellulose from Flax Noil: Kinetic, Equilibrium and Thermodynamic Study. J. Taiwan Inst. Chem. Eng. 2016, 64, 227–234. DOI: 10.1016/j.jtice.2016.04.028.
  • Wang, F.; Yang, B.; Wang, H.; Song, Q.; Tan, F.; Cao, Y. Removal of Ciprofloxacin from Aqueous Solution by a Magnetic Chitosan Grafted Graphene Oxide Composite. J. Mol. Liq. 2016, 222, 188–194. DOI: 10.1016/j.molliq.2016.07.037.
  • Kyzas, G. Z.; Bikiaris, D. N.; Seredych, M.; Bandosz, T. J.; Deliyanni, E. A. Removal of Dorzolamide from Biomedical Wastewaters with Adsorption onto Graphite Oxide/Poly(Acrylic Acid) Grafted Chitosan Nanocomposite. Biores. Technol. 2014, 152, 399–406. DOI: 10.1016/j.biortech.2013.11.046.
  • Langmuir, I. The Adsorption of Gases on the Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Database] DOI: 10.1021/ja02242a004.
  • Danalıoğlu, S. T.; Bayazit, ŞS.; Kerkez, K. Ö.; Salam, M. A. Efficient Removal of Antibiotics by a Novel Magnetic Adsorbent: Magnetic Activated Carbon/Chitosan (MACC) Nanocomposite. J. Mol. Liq. 2017, 24, 589–596.
  • Huang, L.; Wang, M.; Shi, C.; Huang, J.; Zhang, B. Adsorption of Tetracycline and Ciprofloxacin on Activated Carbon Prepared from Lignin with H3PO4 Activation. Desalin. Water Treat. 2014, 52, 2678–2687. DOI: 10.1080/19443994.2013.833873.
  • Freundlich, H. M. F. Over the Adsorption in Solution. J. Phys. Chem. A 1906, 57, 385–470.
  • Li, M-f.; Liu, Y-g.; Liu, S-b.; Shu, D.; Zeng, G-m.; Hu, X-j.; Tan, X-f.; Jiang, L-h.; Yan, Z-l.; Cai, X-x. Cu (II)-Influenced Adsorption of Ciprofloxacin from Aqueous Solutions by Magnetic Graphene Oxide/Nitrilotriacetic Acid Nanocomposite: Competition and Enhancement Mechanisms. Chem. Eng. J. 2017, 319, 219–228. DOI: 10.1016/j.cej.2017.03.016.
  • Temkin, M. I.; Pyzhev, V. Kineetics of Ammonia Synthesis on Promoted Iron Catalyst. Acta Physicochim. URSS 1940, 12, 327–356.
  • Balarak, D.; Azarpira, H.; Mostafapour, F. K. Study of the Adsorption Mechanisms of Cephalexin on to Azolla Filiculoides. Der Pharma. Chemica 2016, 8, 114–121.
  • Dubinin, M. M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem. Rev. 1960, 6, 235–241.
  • Zhu, X.; Tsang, D. C. W.; Chen, F.; Li, S.; Yang, X. Ciprofloxacin Adsorption on Graphene and Granular Activated Carbon: kinetics, Isotherms, and Effects of Solution Chemistry. Environ. Tech 2015, 36, 3094–3102. DOI: 10.1080/09593330.2015.1054316.
  • Yin, D.; Xu, Z.; Shi, J.; Shen, L.; He, Z. Adsorption Characteristics of Ciprofloxacin on the Schorl: Kinetics, Thermodynamics, Effect of Metal Ion and Mechanisms. J. Water Reuse. Desal. 2018, 8, 350–359. DOI: 10.2166/wrd.2017.143.
  • Fakhri, A.; Adami, S. Adsorption and Thermodynamic Study of Cephalosporins Antibiotics from Aqueous Solution onto MgO Nanoparticles. J. Taiwan. Inst. Chem. Eng. 2014, 45, 1001–1006. DOI: 10.1016/j.jtice.2013.09.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.