Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 4
292
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Effects of physicochemical properties of Au cyanidation tailings on cyanide microbial degradation

, , , &
Pages 413-433 | Received 14 Sep 2020, Accepted 27 Jan 2021, Published online: 17 Feb 2021

References

  • Lyu, Z.; Chai, J.; Xu, Z.; Qin, Y.; Cao, J. A Comprehensive Review on Reasons for Tailings Dam Failures Based on Case History. Adv. Civ. Eng. 2019, 2019, 1–18. DOI: 10.1155/2019/4159306.
  • Meunier, L.; Walker, S. R.; Wragg, J.; Parsons, M. B.; Koch, I.; Jamieson, H. E.; Reimer, K. J. Effects of Soil Composition and Mineralogy on the Bioaccessibility of Arsenic from Tailings and Soil in Gold Mine Districts of Nova Scotia. Environ. Sci. Technol. 2010, 44, 2667–2674. DOI: 10.1021/es9035682.
  • Cosmos, A.; Erdenekhuyag, B.-O.; Yao, G.; Li, H.; Zhao, J.; Laijun, W.; Lyu, X. Principles and Methods of Bio Detoxification of Cyanide Contaminants. J. Mater. Cycles Waste Manag. 2020, 22, 939–954. DOI: 10.1007/s10163-020-01013-6.
  • Earthworks. Cyanide Use in Gold mining. 2020. http://www.earthworks.org/issue/cyanide/ (assessed Dec 11, 2020).
  • Baylis, N. A.; Desai, P. N.; Kuhns, K. J. Sodium and Specialty Cyanides Production Facility. Senior Design (CBE) 101. 2018. http://repository.upenn.edu/cbe/sdr/101 (assessed Dec 17, 2020).
  • Brüger, A.; Fafilek, G.; Restrepo B, O. J.; Rojas-Mendoza, L. On the Volatilisation and Decomposition of Cyanide Contaminations from Gold Mining. Sci. Total Environ. 2018, 627, 1167–1173. DOI: 10.1016/j.scitotenv.2018.01.320.
  • Simate, G. S.; Ndlovu, S. Acid Mine Drainage: Challenges and Opportunities. J. Environ. Chem. Eng. 2014, 2, 1785–1803. DOI: 10.1016/j.jece.2014.07.021.
  • Gitari, M.; Akinyemi, S.; Thobakgale, R.; Ngoejana, P. C.; Ramugondo, L.; Matidza, M.; Mhlongo, S. E.; Dacosta, F. A.; Nemapate, N. Physicochemical and Mineralogical Characterization of Musina Mine Copper and New Union Gold Mine Tailings: Implications for Fabrication of Beneficial Geopolymeric Construction Materials. J. Afr. Earth Sci. 2018, 137, 218–228. DOI: 10.1016/j.jafrearsci.2017.10.016.
  • Mudder, T.; Botz, M. Cyanide and Society: A Critical Review. Eur. J. Mineral Process. Environ. Protect. 2004, 4, 62–74.
  • Brueggemann, G. L. Effect of Cyanide on the Growth of Klebsiella Species and Bacillus Species; Oklahoma State University: Oklahoma, 1977.
  • Niven, D.; Collins, P. A.; Knowles, C. The Respiratory System of Chromobacterium violaceum Grown under Conditions of High and Low Cyanide Evolution. Microbiology 1975, 90, 271–285. DOI: 10.1099/00221287-90-2-271.
  • Moradkhani, M.; Yaghmaei, S.; Nejad, Z. G. Biodegradation of Cyanide under Alkaline Conditions by a Strain of Pseudomonas putida Isolated from Gold Mine Soil and Optimization of Process Variables through Response Surface Methodology (RSM) Period. Polytech. Period. Polytech. Chem. Eng. 2017, 62, 265–273. DOI: 10.3311/PPch.10860.
  • Ndeddy, A. R. J.; Babalola, O. O. Effect of Bacterial Inoculation of Strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on Germination, Growth and Heavy Metal (Cd, Cr, and Ni) Uptake of Brassica juncea. Int. J. Phytoremediation 2016, 18, 200–209. DOI: 10.1080/15226514.2015.1073671.
  • Nwokoro, O.; Dibua, M. E. U. Degradation of Soil Cyanide by Single and Mixed Cultures of Pseudomonas stutzeri and Bacillus subtilis. Arh. Hig. Rada. Toksikol. 2014, 65, 113–119. https://doi.org/10.2478/1004-1254. DOI: 10.2478/10004-1254-65-2014-2449.
  • Knowles, C. J. Microorganisms and Cyanide. Bacteriol. Rev. 1976, 40, 652–680. DOI: 10.1128/MMBR.40.3.652-680.1976.
  • Logsdon, M. J.; Hagelstein, K.; Mudder, T. The Management of Cyanide in Gold Extraction. In International Council on Metals and the Environment, Ottawa, Canada, October 1999, 10, 1–40, 1999.
  • Changul, C.; Sutthirat, C.; Padmanahban, G.; Tongcumpou, C. Chemical Characteristics and Acid Drainage; of Mine Tailings from Akara Gold Mine in Thailand. Environ. Earth Sci. 2010, 60, 1583–1595. DOI: 10.1007/s12665-009-0293-0.
  • Deeb, B. E.; Altalhi, A. D. Degradative Plasmid and Heavy Metal Resistance Plasmid Naturally Coexist in Phenol and Cyanide Assimilating Bacteria. Am. J. Biochem. Biotechnol. 2009, 5, 84–93. DOI: 10.3844/ajbbsp.2009.84.93.
  • Luque-Almagro, V. M.; Huertas, M.-J.; Martínez-Luque, M.; Moreno-Vivián, C.; Roldán, M. D.; García-Gil, L. J.; Castillo, F.; Blasco, R. Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions. Appl. Environ. Microbiol. 2005, 71, 940–947. DOI: 10.1128/AEM.71.2.940-947.2005.
  • Acheampong, M. A.; Adiyiah, J.; Ansa, E. D. O. Physico-Chemical Characteristics of a Gold Mining Tailings Dam Wastewater. J. Environ. Sci. Eng. 2013, 2, 469.
  • Akcil, A. Destruction of Cyanide in Gold Mill Effluents: Biological Versus Chemical Treatments. Biotechnol. Adv. 2003, 21, 501–511. DOI: 10.1016/s0734-9750(03)00099-5.
  • America Conference of Governmental Industrial Hygienists (ACGIH). Hydrogen Cyanide and Cyanide Salts, 8th ed.; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, 2001. DOI: 10.1002/ajim.4700260112.
  • Nyamunda, B. C. Review of the Impact on Water Quality and Treatment Options of Cyanide Used in Gold Ore Processing. Water Quality 2017, 183. DOI: 10.5772/65706.
  • National Health and Medical Research Council (NHMRC) and National Resource Management Ministerial Council (NRMMC). Australian Drinking Water Guidelines Paper 6 National Water Quality Management Strategy, Canberra, Commonwealth of Australia, 2011.
  • Department of Water Affairs and Forestry (DWAF). South African Water Quality Guidelines, Domestic Use, 2nd ed.; DWAF: Pretoria, South Africa, 1996; Vol. 1, pp 214.
  • World Health Organization (WHO). European Standards for Drinking-Water. The American Journal of the Medical Sciences, 1970, Vol. 242, pp 56. http://whqlibdoc.who.int/publications/European_standards_for_drinking-water.pdf (accessed Dec 23, 2020).
  • Baxter, J.; Cummings, S. P. The Current and Future Applications of Microorganism in the Bioremediation of Cyanide Contamination. Antonie Van Leeuwenhoek 2006, 90, 1–17. DOI: 10.1007/s10482-006-9057-y.
  • Acrylamide, O. C. National Primary Drinking Water Regulations, 2009.
  • Kellis, M.; Kalavrouziotis, I. K.; Gikas, P. Review of Wastewater Reuse in the Mediterranean Countries Focusing on Regulations and Policies for Municipal and Industrial Applications. Global NEST J. 2013, 15, 333–350. DOI: 10.30955/gnj.000936.
  • Central Pollution Control Board. Environmental Standards for Ambient Air, Automobiles, Fuels, Industries and Noise. Central Pollution Control Board (Ministry of Environment & Forests, Government of India, Padvesh Bhawan, East A1 Jun Nagar Delhi, 2000; pp 110 032.
  • United Nations Environment Program. New Report Urges Global Action on Mining Pollution. 2017. https://www.unenvironment.org/news-and-stories/story/new-report-urges-global-action-mining-pollution (assessed July 17, 2020).
  • Gorchev, H. G.; Ozolins, G. WHO Guidelines for Drinking-Water Quality. WHO Chron. 1984, 38, 104–108.
  • Agency, U. S. P. Water, O. Edition of the Drinking Water Standard and Health Advisories Table, March, 2018.
  • BIS. Indian Standard Drinking Water Specification (Second Revision). Bureau of Indian Standards, IS 10500 (May), 1–11, 2012. http://cgwb.gov.in/Documents/WQ-standards.pdf (accessed Dec 25, 2020)
  • Chinese Ministry of Health (CMH). Standards for Drinking Water Quality. National Standard of the Peoples Republic of China. GB 2006, pp 5749.
  • Oudjehani, K.; Zagury, G. J.; Deschênes, L. Natural Attenuation Potential of Cyanide via Microbial Activity in Mine Tailings. Appl. Microbiol. Biotechnol. 2002, 58, 409–415. DOI: 10.1007/s00253-001-0887-2.
  • Akinpelu, E. A.; Adetunji, A. T.; Ntwampe, S. K. O.; Nchu, F.; Mekuto, L. Performance of Fusarium oxysporum EKT01/02 Isolate in Cyanide Biodegradation System. Environ. Eng. Res. 2018, 23, 223–227. DOI: 10.4491/eer.2017.154.
  • Anning, C.; Wang, J.; Chen, P.; Batmunkh, I.; Lyu, X. Determination and Detoxification of Cyanide in Gold Mine Tailings: A Review. Waste Manag. Res. 2019, 1–10. DOI: 10.1177/0734242X19876691.
  • Avcioglu, N. H.; Bilkay, I. S. Cyanide Removal in Electroplating, Metal Plating, and Gold Mining Industries’ Wastewaters by Using Klebsiella pneumoniae and Klebsiella oxytoca Species. Eur. J. Biol. 2019, 78, 5–10. DOI: 10.26650/eurjbiol.2019.0011.
  • Gupta, N.; Balomajumder, C.; Agarwal, V. Enzymatic Mechanism and Biochemistry for Cyanide Degradation: A Review. J. Hazard. Mater. 2010, 176, 1–13. DOI: 10.1016/j.jhazmat.2009.11.038.
  • Whitlock, J. L.; Mudder, T. I. The Homestake Wastewater Treatment Process: Biological Removal of Toxic Parameters from Cyanidation Wastewaters and Bioassay Effluent Evaluation. In: Vancouver BC (eds.), Fundamental and applied bio hydrometallurgy. In Proceedings of the Sixth International Symposium on Bio Hydrometallurgy. 1985, pp 327–339.
  • Branch, S. W. Treatment of Cyanide Heap Leaches and Tailings; US Environmental Protection Agency: Washington, DC, 1994.
  • Lien, R.; Altringer, P. Case study: bacterial cyanide detoxification during closure of the green springs gold heap leach operation. In Paper Presented at the International Biohydrometallurgy Symposium, 1993.
  • Aronstein, B.; Maka, A.; Srivastava, V. Chemical and Biological Removal of Cyanides from Aqueous and Soil-Containing Systems. Appl. Microbiol. Biotechnol. 1994, 41, 700–707. https://doi.org/10.1007/BF00167288. DOI: 10.1007/s002530050202.
  • Berben, T.; Overmars, L.; Sorokin, D. Y. Comparative Genome Analysis of Three Thiocyanate Oxidizing Thioalkalivibrio Species Isolated from Soda Lakes. Front. Microbiol. 2017, 8, 254. DOI: 10.3389/fmicb.2017.00254.
  • Young, C.; Jordan, T. Cyanide Remediation: current and past Technologies. In Proceedings of the 10th Annual Conference on Hazardous Waste Research. May 23–24, 1995, Kansas State Univ., Manhattan, Kansas, USA, 1995.
  • Fashola, M. O.; Ngole-Jeme, V. M.; Babalola, O. O. Heavy Metal Pollution from Gold Mines: environmental Effects and Bacterial Strategies for Resistance. IJERPH 2016, 13, 1047. DOI: 10.3390/ijerph13111047.
  • Edinger, E. Gold Mining and Submarine Tailings Disposal: Review and Case Study. Oceanography 2012, 25, 184–199. https://doi.org/10.1016/j.ecoenv.2017.02.033. DOI: 10.5670/oceanog.2012.54.
  • Gasparrini, C. Gold and Other Precious Metals: From Ore to Market; Springer Science & Business Media: Berlin, 2012.
  • Eugene, W. W. L.; Mujumdar, A. S. Gold Extraction and Recovery Processes; Minerals, Metals, and Materials Technology Centre, National University of Singapore: Singapore, 2009.
  • Alguacil, F. J. The Chemistry of Gold Extraction; Marsden, J.O.; House, I., Eds.; SME. Gold Bull. 2006, 39, 138–138. DOI: 10.1007/BF03215543.
  • Donato, D.; Madden-Hallett, D.; Smith, G.; Smith, G.; Gursansky, W. Heap Leach Cyanide Irrigation and Risk to Wildlife: Ramifications for the International Cyanide Management Code. Ecotoxicol. Environ. Saf. 2017, 140, 271–278. DOI: 10.1016/j.ecoenv.2017.02.033.
  • Laitos, J. G. Cyanide, Mining, and the Environment. Pace Environ. Law Rev. 2013, 30, 869–876.
  • la Brooy, S. R.; Linge, H. G.; Walker, G. S. Review of Gold Extraction from Ores. Miner. Eng. 1994, 7, 1213–1241. DOI: 10.1016/0892-6875(94)90114-7.
  • Lemière, B. A Review of pXRF (Field Portable X-Ray Fluorescence) Applications for Applied Geochemistry. J. Geochem. Explor. 2018, 188, 350–363. DOI: 10.1016/j.gexplo.2018.02.006.
  • Lottermoser, B. G. Sulfidic Mine Wastes. In Mine Wastes; Lottermoser, B. G., Ed.; Springer: Berlin, Heidelberg, 2010, pp 43–117.
  • Yellishetty, M.; Karpe, V.; Reddy, E.; Subhash, K.; Ranjith, P. G. Reuse of Iron Ore Mineral Wastes in Civil Engineering Constructions: A Case Study. Resour. Conserv. Recycl. 2008, 52, 1283–1289. DOI: 10.1016/j.resconrec.2008.07.007.
  • Rao, S. M.; Reddy, B. V. Characterization of Kolar Gold Field Mine Tailings for Cyanide and Acid Drainage. Geotech. Geol. Eng. 2006, 24, 1545–1559. DOI: 10.1007/s10706-005-3372-3.
  • Duruibe, J. O.; Ogwuegbu, M.; Egwurugwu, J. Heavy Metal Pollution and Human Biotoxic Effects. Int. J. Phys. Sci. 2007, 2, 112–118. DOI: 10.5897/IJPS.9000289.
  • Bowker, L. N.; Chambers, D. M. The Risk, Public Liability, and Economics Of Tailings Storage Facility Failures. 2015. https://earthworks.org/cms/assets/uploads/archive/files/pubs-others/BowkerChambers-RiskPublicLiability_EconomicsOfTailingsStorageFacility%20Failures-23Jul15.pdf (assessed Dec 17, 2020).
  • Hudson-Edwards, K.; Jamieson, H. E.; Lottermoser, B. G. Mine Wastes: Past, Present, Future. Elements 2011, 7, 375–380. DOI: 10.2113/gselements.7.6.375.
  • Douglas, S.; Beveridge, T. J. Mineral Formation by Bacteria in Natural Microbial Communities. FEMS Microbiol. Ecol. 1998, 26, 79–88. DOI: 10.1111/j.1574-6941.1998.tb00494.x.
  • Da Rosa, C.; Lyon, J. S.; Hocker, P. Golden Dreams, Poisoned Streams; Mineral Policy Center: Washington, DC, 1997.
  • Donato, D.; Ricci, P. F.; Noller, B.; Moore, M.; Possingham, H.; Nichols, O. The Protection of Wildlife from Mortality: Hypothesis and Results for Risk Assessment. Environ. Int. 2008, 34, 727–736. DOI: 10.1016/j.envint.2007.10.003.
  • Donato, D.; Nichols, O.; Possingham, H.; Moore, M.; Ricci, P.; Noller, B. A Critical Review of the Effects of Gold Cyanide-Bearing Tailings Solutions on Wildlife. Environ. Int. 2007, 33, 974–984. https://doi.org/10.1016/j.envint.2007.10.003. DOI: 10.1016/j.envint.2007.04.007.
  • Weber, P. A.; Thomas, J. E.; Skinner, W. M.; Smart, R. S. C. A Methodology to Determine the Acid-Neutralization Capacity of Rock Samples. Canad. Mineral. 2005, 43, 1183–1192. DOI: 10.2113/gscanmin.43.4.1183.
  • Ro, C.-U.; Kim, H.; Van Grieken, R. An Expert System for Chemical Speciation of Individual Particles Using Low-Z Particle Electron Probe X-Ray Microanalysis Data. Anal. Chem. 2004, 76, 1322–1327. DOI: 10.1021/ac035149i.
  • Parbhakar-Fox, A.; Lottermoser, B. G. A Critical Review of Acid Rock Drainage Prediction Methods and Practices. Mineral Eng. 2015, 82, 107–124. DOI: 10.1016/j.mineng.2015.03.015.
  • Foster, A. L.; Brown, G. E.; Tingle, T. N.; Parks, G. A. Quantitative Arsenic Speciation in Mine Tailings Using X-Ray Absorption Spectroscopy. Am. Mineral. 1998, 83, 553–568. https://doi.org/10.2138/am-1998-5-615. DOI: 10.2138/am-1998-5-616.
  • Flemming, R. L.; Salzsauler, K. A.; Sherriff, B. L.; Sidenko, N. V. Identification of Scorodite in Fine-Grained, High-Sulfide, Arsenopyrite Mine-Waste Using Micro X-Ray Diffraction (μXRD). Canad. Mineral. 2005, 43, 1243–1254. DOI: 10.2113/gscanmin.43.4.1243.
  • Jamieson, H. E. Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact. Elements 2011, 7, 381–386. DOI: 10.2113/gselements.7.6.381.
  • James, A. Prediction of pollution loads from coarse Sulphide-containing waste materials. Water Research Commission Report. 559/1/97. 1997.
  • Yao, G.; Cui, T.; Su, Y.; Anning, C.; Wang, J.; Lyu, X. Hydration Properties of Mechanically Activated Muscovite in the Presence of Calcium Oxide. Clays Clay Miner. 2020, 1–8. DOI: 10.1007/s42860-020-00095-5.
  • Vega, F.; Covelo, E.; Andrade, M.; Marcet, P. Relationships Between Heavy Metals Content and Soil Properties in Mine Soils. Anal. Chim. Acta 2004, 524, 141–150. DOI: 10.1016/j.aca.2004.06.073.
  • Raybuck, S. A. Microbes and Microbial Enzymes for Cyanide Degradation. Biodegradation 1992, 3, 3–18. DOI: 10.1007/BF00189632.
  • Dash, R. R.; Gaur, A.; Balomajumder, C. Cyanide in Industrial Wastewaters and Its Removal: A Review on Biotreatment. J. Hazard. Mater. 2009, 163, 1–11. DOI: 10.1016/j.jhazmat.2008.06.051.
  • Adjei, M. D.; Ohta, Y. Factors Affecting the Biodegradation of Cyanide by Burkholderia cepacia Strain C–3. J. Biosc. Eng. 2000, 89, 274–277. DOI: 10.1016/S1389-1723(00)88833-7.
  • Da Pelo, S.; Musu, E.; Cidu, R.; Frau, F.; Lattanzi, P. Release of Toxic Elements from Rocks and Mine Wastes at the Furtei Gold Mine (Sardinia, Italy). J. Geochem. Explor. 2009, 100, 142–152. DOI: 10.1016/j.gexplo.2008.06.006.
  • Rengel, Z. Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; Springer: Berlin, Heidelberg, 2011, pp 69–85.
  • Kim, K.; Lee, H.; Yoo, B. The Environmental Impact of Gold Mines in the Yugu-Kwangcheon Au–Ag Metallogenic Province, Republic Of Korea. Environ. Technol. 1998, 19, 291–298. DOI: 10.1080/09593331908616683.
  • Aucamp, P.; Van Schalkwyk, A. Trace Element Pollution of Soils by Abandoned Gold Mine Tailings, Near Potchefstroom, South Africa. Bull. Eng. Geol. Environ. 2003, 62, 123–134. DOI: 10.1007/s10064-002-0179-9.
  • Khozhina, E. I.; Sherriff, B. Background Research of the Tailings Area of a Ni–Cu Mine for the Determination of an Optimal Method of Revegetation. Forest Snow Landscape Res. 2006, 80, 367–386.
  • Firestone, M.; Killham, K.; McColl, J. Fungal Toxicity of Mobilized Soil Aluminum and Manganese. Appl. Environ. Microbiol. 1983, 46, 758–761. DOI: 10.1128/AEM.46.3.758-761.1983.
  • Förstner, U.; Kersten, M. Assessment of Metal Mobility in Dredged Material and Mine Waste by Pore Water Chemistry and Solid Speciation. Chem. Biol. Solid Waste 1988, 214–237. DOI: 10.1007/978-3-642-72924-9_9.
  • Abdul-Wahab, S.; Marikar, F. The Environmental Impact of Gold Mines: pollution by Heavy Metals. Open Eng. 2012, 2, 304–313. DOI: 10.2478/s13531-011-0052-3.
  • Chotpantarat, S. A Review of Static Tests and Recent Studies. Am. J. Appl. Sci. 2011, 8, 400–406. https://doi.org/10.3844/AJASSP.2011. DOI: 10.3844/ajassp.2011.400.406.
  • Hatje, V.; Pedreira, R. M.; de Rezende, C. E.; Schettini, C. A. F.; de Souza, G. C.; Marin, D. C.; Hackspacher, P. C. The Environmental Impacts of One of the Largest Tailing Dam Failures Worldwide. Sci. Rep. 2017, 7, 1–13. DOI: 10.1038/s41598-017-11143-x.
  • Given, B.; Dixon, B.; Douglas, G.; Mihoc, R.; Mudder, T. Combined Aerobic and Anaerobic Biological Treatment of Tailings Solution at the Nickel Plate Mine. The Cyanide Monograph 1998, pp 391–421.
  • Fourie, A.; Blight, G.; Papageorgiou, G. Static Liquefaction as a Possible Explanationfor the Merriespruit Tailings Dam Failure. Can. Geotech. J. 2001, 38, 707–719. https://doi.org/10.1139/t02-079. DOI: 10.1139/t00-112.
  • Lázár, I.; Kiss, E. Gold, Cyanide, and Fish in the River of Life & Death. In: Life; Miller, P.; Westra, L., Eds.; Rowman and Littlefield, Lanham, 2001; 167–180.
  • Mastrochirico, F. V. A.; Freitas, M. V.; Ariede, R. B.; Lira, L. V. G.; Mendes, N. J.; Hashimoto, D. T. Genetic Applications in the Conservation of Neotropical Freshwater Fish. Biol. Resour Water 2018, 249–284. DOI: 10.5772/intechopen.73207.
  • Marshall, J. Tailings Dam Spills at Mount Polley and Mariana. In: Chronicles of Disasters. Corporate mapping project report, British Columbia (BC), Canada, 2018
  • Liu, R.; Liu, J.; Zhang, Z.; Borthwick, A.; Zhang, K. Accidental Water Pollution Risk Analysis of Mine Tailings Ponds in Guanting Reservoir Watershed, Zhangjiakou City, China. Int. J. Environ. Res. Public Health 2015, 12, 15269–15284. DOI: 10.3390/ijerph121214983.
  • ] Draves, J. F.; Fox, M. G. Effects of a Mine Tailings Spill on Feeding and Metal Concentrations in Yellow Perch (Perca flavescens). Environ. Toxicol. Chem. 1998, 17, 1626–1632. https://doi.org/10.1002/etc.5620170826. DOI: 10.1897/1551-5028(1998)017<1626:EOAMTS > 2.3.CO;2.
  • Achterberg, E. P.; Braungardt, C.; Morley, N. H.; Elbaz-Poulichet, F.; Leblanc, M. Impact of Los Frailes Mine Spill on Riverine, Estuarine, and Coastal Waters in Southern Spain. Water Res. 1999, 33, 3387–3394. DOI: 10.1016/S0043-1354(99)00282-1.
  • Bird, G.; Brewer, P. A.; Macklin, M. G.; Balteanu, D.; Driga, B.; Serban, M.; Zaharia, S. The Solid State Partitioning of Contaminant Metals and as in River Channel Sediments of the Mining Affected Tisa Drainage Basin, Northwestern Romania, and Eastern Hungary. Appl. Geochem. 2003, 18, 1583–1595. DOI: 10.1016/S0883-2927(03)00078-7.
  • Eisler, R. Cyanide Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review, Biological Report 85 (1.23). US Fish Wildlife Service, Maryland, USA, 1991 Pp 58.
  • Ritcey, G. M. Tailings Management in Gold Plants. Hydrometallurg 2005, 78, 3–20. DOI: 10.1016/j.hydromet.2005.01.001.
  • Merchant, S. S.; Helmann, J. D. Elemental Economy: Microbial Strategies for Optimizing Growth in the Face of Nutrient Limitation. Adv. Microb. Physiol. 2012, 60, 91–210. DOI: 10.1016/B978-0-12-398264-3.00002-4.
  • Ebbs, S. Biological Degradation of Cyanide Compounds. Curr. Opin. Biotechnol. 2004, 15, 231–236. DOI: 10.1016/j.copbio.2004.03.006.
  • Knowles, C. J. Cyanide Utilization and Degradation by Microorganisms. In Paper Presented at the CIBA Found Symp 1988, 140, pp 3–15.
  • Maniyam, M. N.; Sjahrir, F.; Ibrahim, A.; Cass, A. Biodegradation of Cyanide by Rhodococcus UKMP-5M. Biologia 2013, 68, 177–185. DOI: 10.2478/s11756-013-0158-6.
  • Kandasamy, S.; Dananjeyan, B.; Krishnamurthy, K.; Benckiser, G. Aerobic Cyanide Degradation by Bacterial Isolates from Cassava Factory Wastewater. Braz. J. Microbiol. 2015, 46, 659–666. DOI: 10.1590/S1517-838246320130516.
  • Wu, C.-F.; Xu, X.-M.; Zhu, Q.; Deng, M.-C.; Feng, L.; Peng, J.; Yuan, J.-P.; Wang, J.-H. An Effective Method for the Detoxification of Cyanide-Rich Wastewater by Bacillus sp. CN-22. Appl. Microbiol. Biotechnol. 2014, 98, 3801–3807. DOI: 10.1007/s00253-013-5433-5.
  • Gurbuz, F.; Ciftci, H.; Akcil, A. Biodegradation of Cyanide Containing Effluents by Scenedesmus obliquus. J. Hazard. Mater. 2009, 162, 74–79. DOI: 10.1016/j.jhazmat.2008.05.008.
  • Mekuto, L.; Razanamahandry, L. C.; Ntwampe, S. K.; Mudumbi, J.-B. N.; Muchatibaya, G. Process Performance Determination Data in Thiocyanate Biodegradation Systems: Use of Sulphate Production. Data Brief. 2018, 17, 275–278. DOI: 10.1016/j.dib.2018.01.017.
  • Adams, D.; Komen, J.; Pickett, T. Biological Cyanide Degradation. Cyanide: Social, Industrial, and Economic Aspects;. The Metals Society: Warrendale, PA, 2001, pp 203–213. DOI: 10.2478/s11756-013-0158-6.
  • Schievelbein, H.; Baumeister, R.; Vogel, R. Comparative Investigations on the Activity of Thiosulphate-Sulphur Transferase. Naturwissenschaften 1969, 56, 416–417. DOI: 10.1007/BF00593627.
  • Watts, M. P.; Moreau, J. W. Thiocyanate Biodegradation: Harnessing Microbial Metabolism for Mine Remediation. Microbiol. Aust. 2018, 39, 157–161. DOI: 10.1071/MA18047.
  • Botz, M. M. Overview of Cyanide Treatment Methods: Mining Environmental Management; Mining Journal Ltd.: London, United Kingdom, 2001, pp 28–30.
  • ] Mudder, T. I.; Whitlock, J. Biological Treatment of Cyanidation Waste Waters. Min. Metall. Explor. 1984, 1, 161–165. DOI: 10.1007/BF03402571.
  • Yanase, H.; Sakamoto, A.; Okamoto, K.; Kita, K.; Sato, Y. Degradation of the Metal–Cyano Complex Tetracyanonickelate(II) by Fusarium Oxysporum N-10. Appl. Microbiol. Biotechnol. 2000, 53, 328–334. DOI: 10.1007/s002530050029.
  • Silva-Avalos, J.; Richmond, M. G.; Nagappan, O.; Kunz, D. A. Degradation of the Metal–Cyano Complex Tetracyanonickelate(II) by Cyanide-Utilizing Bacterial Isolates. Appl. Environ. Microbiol. 1990, 56, 3664–3670. DOI: 10.1128/AEM.56.12.3664-3670.1990.
  • Finnegan, I.; Toerien, S.; Abbot, L.; Smit, F.; Raubenheimer, H. Identification and Characterisation of an Acinetobacter sp. capable of Assimilation of a Range of Cyano–Metal Complexes, Free Cyanide Ions and Simple Organic Nitriles. Appl. Microbiol. Biotechnol. 1991, 36, 142–144. DOI: 10.1007/BF00164715.
  • Pettet, A.; Mills, E. Biological Treatment of Cyanides, With and Without Sewage. J. Appl. Chem. 2007, 4, 434–444. DOI: 10.1002/jctb.5010040809.
  • Shin, D.; Park, J.; Park, H.; Lee, J.-C.; Kim, M.-S.; Lee, J. Key Microbes and Metabolic Potentials Contributing to Cyanide Biodegradation in Stirred-Tank Bioreactors Treating Gold Mining Effluent. Miner. Process. Extr. Metall. Rev. 2020, 41, 85–95. DOI: 10.1080/08827508.2019.1575213.
  • Rollinson, G.; Jones, R.; Meadows, M. P.; Harris, R. E.; Knowles, C. J. The Growth of a Cyanide-Utilising Strain of Pseudomonas fluorescens in Liquid Culture on Nickel Cyanide as a Source of Nitrogen. FEMS Microbiol. Lett. 1987, 40, 199–205. DOI: 10.1111/j.1574-6968.1987.tb02025.x.
  • Dimitrova, T.; Repmann, F.; Freese, D. Degradation of Ferrocyanide by Natural Isolated Bacteria. Int. J. Phytoremediation. 2020, 22, 20–28. DOI: 10.1080/15226514.2019.1633996.
  • Olaya-Abril, A.; Pérez, M. D.; Cabello, P.; Martignetti, D.; Sáez, L. P.; Luque-Almagro, V. M.; Moreno-Vivián, C.; Roldán, M. D. Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis during Cyanide Assimilation by the Alkaliphilic Bacterium Pseudomonas pseudoalcaligenes CECT5344. Front. Microbiol. 2020, 11, 28. DOI: 10.3389/fmicb.2020.00028.
  • Ibáñez, M. I.; Purificación, C.; Luque-Almagro, V. M.; Lara, P.; Sáez, A. O.; Sánchez, V. M.; Maria, D. L.; Conrado, M.-V.; María, D. R. Quantitative Proteomic Analysis of Pseudomonas pseudoalcaligenes CECT5344 in Response to Industrial Cyanide-Containing Wastewaters Using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC–MS/MS). PLoS One. 2017, 12, e0172908. DOI: 10.1371/journal.pone.0172908.
  • Luque-Almagro, V. M.; Blasco, R.; Martínez-Luque, M.; Moreno-Vivián, C.; Castillo, F.; Roldán, M. D. Bacterial Cyanide Degradation is under Review: Pseudomonas pseudoalcaligenes CECT5344, a Case of an Alkaliphilic Cyanotroph; Portland Press Ltd.: London, 2011. DOI: 10.1042/BST0390269.
  • Huertas, M. J.; Sáez, L. P.; Roldán, M. D.; Luque-Almagro, V. M.; Martínez-Luque, M.; Blasco, R.; Castillo, F.; Moreno-Vivián, C.; García-García, I. Alkaline Cyanide Degradation by Pseudomonas pseudoalcaligenes CECT5344 in a Batch Reactor. Influence of pH. J. Hazard. Mater. 2010, 179, 72–78. DOI: 10.1016/j.jhazmat.2010.02.059.
  • Fassnacht, D.; Pörtner, R. Experimental and Theoretical Considerations on Oxygen Supply for Animal Cell Growth in Fixed-Bed Reactors. J. Biotechnol. 1999, 72, 169–184. DOI: 10.1016/s0168-1656(99)00129-7.
  • Meuwly, F.; Loviat, F.; Ruffieux, P. A.; Bernard, A.; Kadouri, A.; von Stockar, U. Oxygen Supply for CHO Cells Immobilized on a Packed‐Bed of Fibra‐Cel® Disks. Biotechnol. Bioeng. 2006, 93, 791–800. DOI: 10.1002/bit.20766.
  • Sharma, S. Bioremediation: Features, Strategies and Applications. Asian J. Pharm. Life Sci. 2012, 2231, 4423.
  • Razanamahandry, L. C.; Onwordi, C. T.; Saban, W.; Bashir, A. K. H.; Mekuto, L.; Malenga, E.; Manikandan, E.; Fosso-Kankeu, E.; Maaza, M.; Ntwampe, S. K. O. Performance of Various Cyanide Degrading Bacteria on the Biodegradation of Free Cyanide in Water. J. Hazard. Mater. 2019, 380, 120900. DOI: 10.1016/j.jhazmat.2019.120900.
  • Mikami, E.; Misono, T. Microbial Purification of Some Specific Industrial Cyanide Waste Treatment with Cyano-Sensors. J. Ferment. Technol. 1968, 46, 1056–1066.
  • Ashcroft, J.; Haddock, B. A. Synthesis of Alternative Membrane-Bound Redox Carriers during Aerobic Growth of Escherichia coli in the Presence of Potassium Cyanide. Biochem. J. 1975, 148, 349–352. DOI: 10.1042/bj1480349.
  • Potivichayanon, S.; Kitleartpornpairoat, R. Biodegradation of Cyanide by a Novel Cyanide-Degrading Bacterium. World Acad. Sci. Eng. Technol. 2010, 42, 362–1365. DOI: 10.5281/zenodo.1071264.
  • Lin, L.; Xu, F.; Ge, X.; Li, Y. Biological Treatment of Organic Materials for Energy and Nutrients Production-Anaerobic Digestion and Composting. Adv. Bioenergy 2019, 4, 121–181. DOI: 10.1016/bs.aibe.2019.04.002.
  • Mortier, N.; Velghe, F.; Verstichel, S. Organic Recycling of Agricultural Waste Today: composting and Anaerobic Digestion. Biotransformation of Agricultural Waste and By-Products; Elsevier: Amsterdam, 2016, 69–124. DOI: 10.1016/B978-0-12-803622-8.00004-5.
  • Luque-Almagro, V. M.; Cabello, P.; Sáez, L. P.; Olaya-Abril, A.; Moreno-Vivián, C.; Roldán, M. D. Exploring Anaerobic Environments for Cyanide and Cyano-Derivatives Microbial Degradation. Appl. Microbiol. Biotechnol. 2018, 102, 1067–1074. DOI: 10.1007/s00253-017-8678-6.
  • Sáez, L. P.; Cabello, P.; Ibáñez, M. I.; Luque-Almagro, V. M.; Roldán, M. D.; Moreno-Vivián, C. Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the Cyn Gene Cluster. IJMS 2019, 20, 3008. DOI: 10.3390/ijms20123008.
  • Pichat, L. Syntheses and uses of isotopically labelled cyanides. In: PATAI'S Chemistry of Functional Groups; Rapport, Z., Ed.; London, UK, 1970, 743–790. DOI: 10.1002/9780470771242.ch13.
  • Kunz, D. A.; Chen, J.-L.; Pan, G. Accumulation of Alpha-Keto Acids as Essential Components in Cyanide Assimilation by Pseudomonas fluorescens NCIMB 11764. Appl. Environ. Microbiol. 1998, 64, 4452–4459. DOI: 10.1128/AEM.64.11.4452-4459.1998.
  • Hope, K. M.; Knowles, C. J. The Anaerobic Utilisation of Cyanide in the Presence of Sugars by Microbial Cultures Can Involve an Abiotic Process. FEMS Microbiol. Lett. 1991, 80, 217–220. DOI: 10.1111/j.1574-6968.1991.tb04664.x.
  • Hibbing, M. E.; Fuqua, C.; Parsek, M. R.; Peterson, S. B. Bacterial Competition: Surviving and Thriving in the Microbial Jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. DOI: 10.1038/nrmicro2259.
  • Hansen, S. K.; Rainey, P. B.; Haagensen, J. A.; Molin, S. Evolution of Species Interactions in a Biofilm Community. Nature 2007, 445, 533–536. DOI: 10.1038/nature05514.
  • Harrison, F.; Paul, J.; Massey, R. C.; Buckling, A. Interspecific Competition and Siderophore-Mediated Cooperation in Pseudomonas aeruginosa. ISME J. 2008, 2, 49–55. DOI: 10.1038/ismej.2007.96.
  • Ji, G.; Beavis, R.; Novick, R. P. Bacterial Interference Caused by Autoinducing Peptide Variants. Science 1997, 276, 2027–2030. DOI: 10.1126/science.276.5321.2027.
  • Kumar, S.; Gaur, R.; Verma, S. K.; Sahay, R. Isolation, Characterization, and Assessing Survival of Bacteria in Stress Developed by Simulated Cadmium and Lead Contamination in Soil. Dev. Microbiol. Mol. Biol. 2012, 3, 1–7.
  • Patil, Y.; Paknikar, K. Removal and Recovery of Metal Cyanides Using a Combination of Biosorption and Biodegradation Processes. Biotechnol. Lett. 1999, 21, 913–919. DOI: 10.1023/A:1005550707798.
  • Bruins, M. R.; Kapil, S. F.; Oehme, W. Microbial Resistance to Metals in the Environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. DOI: 10.1006/eesa.1999.1860.
  • Kaur, S.; Kamli, M. R.; Ali, A. Role of Arsenic and Its Resistance in Nature. Can. J. Microbiol. 2011, 57, 769–774. DOI: 10.1139/w11-062.
  • Smejkalova, M.; Mikanova, O.; Boruvka, L. Effects of Heavy Metal Concentrations on Biological Activity of Soil Micro-Organisms. Plant Soil Environ. 2003, 49, 321–326. DOI: 10.17221/4131-PSE.
  • Shen, H.; Wang, Y.-T. Simultaneous Chromium Reduction and Phenol Degradation in a Coculture of Escherichia coli ATCC 33456 and Pseudomonas putida DMP-1. Appl. Environ. Microbiol. 1995, 61, 2754–2758. DOI: 10.1128/AEM.61.7.2754-2758.1995.
  • Hoostal, M. J.; Bidart-Bouzat, M. G.; Bouzat, J. L. Local Adaptation of Microbial Communities to Heavy Metal Stress in Polluted Sediments of Lake Erie. FEMS Microbiol. Ecol. 2008, 65, 156–168. DOI: 10.1111/j.1574-6941.2008.00522.x.
  • Li, P.; Qian, H.; Howard, K. W.; Wu, J. Heavy Metal Contamination of Yellow River Alluvial Sediments, Northwest China. Environ. Earth Sci. 2015, 73, 3403–3415. DOI: 10.1007/s12665-014-3628-4.
  • Shafiei, F.; Watts, M. P.; Pajank, L.; Moreau, J. W. The Effect of Heavy Metals on Thiocyanate Biodegradation by an Autotrophic Microbial Consortium Enriched from Mine Tailings. Appl. Microbiol. Biotechnol. 2021, 105, 417–427. DOI: 10.1007/s00253-020-10983-4.
  • Shivaji, S.; Suresh, K.; Chaturvedi, P.; Dube, S.; Sengupta, S. Bacillus arsenicus sp. nov., an Arsenic-Resistant Bacterium Isolated from a Siderite Concretion in West Bengal, India. Int. J. Syst. Evol. Microbiol. 2005, 55, 1123–1127. DOI: 10.1099/ijs.0.63476-0.
  • Zhang, C.; Wang, K.; Tan, S.; Niu, X.; Su, P. Evaluation and Remediation of Organics, Nutrients, and Heavy Metals in Landfill Leachate – A Case Study in Beijing. J. Chem. Ecol. 2013, 29, 668–675. DOI: 10.1080/02757540.2013.841897.
  • Chitpirom, K.; Akaracharanya, A.; Tanasupawat, S.; Leepipatpibooim, N.; Kim, K.-W. Isolation and Characterization of Arsenic Resistant Bacteria from Tannery Wastes and Agricultural Soils in Thailand. Ann. Microbiol. 2009, 59, 649–656. DOI: 10.1007/BF03179204.
  • Le, X. C. Arsenic Speciation in the Environment and Humans. In Environmental Chemistry of Arsenic; Frankenberger, W.T. Jr.; Ed.; CRC Press: Baco Raton, 2001,. pp 115–136.
  • Kuperman, R.; Carreiro, M. M. Soil Heavy Metal Concentrations, Microbial Biomass, and Enzyme Activities in a Contaminated Grassland Ecosystem. Soil Biol. Biochem. 1997, 29, 179–190. DOI: 10.1016/S0038-0717(96)00297-0.
  • Dursun, A.; Çalık, A.; Aksu, Z. Degradation of Ferrous (II) Cyanide Complex Ions by Pseudomonas fluorescens. Process Biochem. 1999, 34, 901–908. DOI: 10.1016/S0032-9592(99)00014-X.
  • Anderson, C. R.; Cook, G. M. Isolation and Characterization of Arsenate-Reducing Bacteria from Arsenic-Contaminated Sites in New Zealand. Curr. Microbiol. 2004, 48, 341–347. DOI: 10.1007/s00284-003-4205-3.
  • Walker, S. R.; Parsons, M. B.; Jamieson, H. E.; Lanzirotti, A. Arsenic Mineralogy of Near-Surface Tailings and Soils: Influences on Arsenic Mobility and Bioaccessibility in the Nova Scotia Gold Mining Districts. Canad. Mineral. 2009, 47, 533–556. DOI: 10.3749/canmin.47.3.533.
  • Perera, N. Hydrolysis and cyanide speciation of some heavy metals relevant to the fate of cyanide in the environment. PhD Thesis, Murdoch University, 2001.
  • Kameda, M. Fundamental Studies on Dissolution of Gold in Cyanide Solutions. III: Effects of Alkalis, Lead Acetate, and Some Impurities Contained in Foul Cyanide Solutions. Science Reports of the Research Institutes. Tohoku University Ser. A Physics, Chemistry and Metallurgy 1949; Vol. 1, pp 435–444.
  • Marsden, J.; House, I. The Chemistry of Gold Extraction; Society of Mining and Exploration (SME): Littleton, 2006.
  • Ok, Y. S.; Jeon, C. Selective Adsorption of the Gold-Cyanide Complex from Waste Rinse Water Using Dowex 21K XLT Resin. J. Ind. Eng. Chem. 2014, 20, 1308–1312. DOI: 10.1016/j.jiec.2013.07.010.
  • Luque-Almagro, V. M.; Moreno-Vivián, C.; Roldán, M. D. Biodegradation of Cyanide Wastes from Mining and Jewellery Industries. Curr. Opin. Biotechnol. 2016, 38, 9–13. DOI: 10.1016/j.copbio.2015.12.004.
  • Mazierski, J. Effect of Chromium (CrVI) on the Growth Rate of Denitrifying Bacteria. Water Res. 1994, 28, 1981–1985. DOI: 10.1016/0043-1354(94)90173-2.
  • Tanu, F. Z.; Hakim, A.; Hoque, S. Bacterial Tolerance and Reduction of Chromium (VI) by Bacillus cereus Isolate PGBw4. Am. J. Environ. Protect. 2016, 5, 35–38. DOI: 10.11648/j.ajep.20160502.13.
  • Ibrahim, K. K. Effect of Heavy Metals on Cyanide Biodegradation by Resting Cells of Serratia marcescens Strain. J. Environ. Microbiol. Toxicol. 2014, 2, 2.
  • Lyon, G. J.; Novick, R. P. Peptide Signaling in Staphylococcus aureus and Other Gram-Positive Bacteria. Peptides 2004, 25, 1389–1403. DOI: 10.1016/j.peptides.2003.11.026.
  • Wilson, S. A.; Raudsepp, M.; Dipple, G. M. Verifying and Quantifying Carbon Fixation in Minerals from Serpentine-Rich Mine Tailings Using the Rietveld Method with X-Ray Powder Diffraction Data. Am. Mineral. 2006, 91, 1331–1341. DOI: 10.2138/am.2006.2058.
  • Lapakko, K. Characterization and Static Testing of Ten Gold Mine Tailings. In Paper Presented at 1992 American Society for Surface Mining and Reclamation Meeting, Duluth, Minnesota, 14–18, June 1992, 1992, pp 370–384.
  • Blowes, D. W.; Jambor, J. L.; Hanton-Fong, C. J.; Lortie, L.; Gould, W. D. Geochemical, Mineralogical, and Microbiological Characterization of a Sulphide-Bearing Carbonate-Rich Gold-Mine Tailings Impoundment. Joutel, Québec. Appl. Geochem. 1998, 13, 687–705. DOI: 10.1016/S0883-2927(98)00009-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.