Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 7
300
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Bactericidal and fungicidal capacity of Ag2O/Ag nanoparticles synthesized with Aloe vera extract

, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 762-768 | Received 06 Aug 2020, Accepted 27 Apr 2021, Published online: 17 May 2021

References

  • Kaichen, X.; Chentao, Z.; Tzu Hsiao, L.; Puqun, W.; Rui, Z.; Rong, J.; Minghui, H. Hybrid Metal‐Insulator‐Metal Structures on Si Nanowires Array for Surface Enhanced Raman Scattering. Opto-Electron. Eng. 2017, 44, 185–191. DOI: 10.3969/j.issn.1003-501X.2017.02.006.
  • Xu, K.; Wu, J.; Tan, C. F.; Ho, A. G. W.; Wei, A. A.; Hong, M. Ag–CuO–ZnO Metal–Semiconductor Multiconcentric Nanotubes for Achieving Superior and Perdurable Photodegradation. Nanoscale 2017, 9, 11574. DOI: 10.1039/c7nr03279j.
  • Xu, K.; Yan, H.; Tan, C. F.; Lu, Y.; Li, Y.; Ho, G. W.; Ji, R.; Hong, M. Hedgehog Inspired CuO Nanowires/Cu2O Composites for Broadband Visible‐Light‐Driven Recyclable Surface Enhanced Raman Scattering. Adv. Opt. Mater. 2018, 6, 1701167. DOI: 10.1002/adom.201701167.
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. DOI: 10.1088/0957-4484/16/10/059.
  • Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. DOI: 10.3390/molecules20058856.
  • Guzman, M.; Dille, J.; Godet, S. Synthesis and Antibacterial Activity of Silver Nanoparticles against Gram-Positive and Gram-Negative Bacteria. Nanomed. Nanotechnol. 2012, 8, 37–45. DOI: 10.1016/j.nano.2011.05.007.
  • Meikle, S. T. Chapter 16: Silver-Doped Hydrogels for Wound Dressings. In Wound Healing Biomaterials; Ågren, M. S., Ed.; Woodhead Publishing, Cambridge, UK, 2016; pp. 335–351.
  • Tominaga, J. The Application of Silver Oxide Thin Films to Plasmon Photonic Devices. J. Phys.: Condens. Mater. 2003, 15, R1101–R1122. DOI: 10.1088/0953-8984/15/25/201.
  • Lok, C.-N.; Ho, C.-M.; Chen, R.; He, Q.-Y.; Yu, W.-Y.; Sun, H.; Tam, P. K.-H.; Chiu, J.-F.; Che, C.-M. Silver Nanoparticles: Partial Oxidation and Antibacterial Activities. J. Biol. Inorg. Chem. 2007, 12, 527–534. DOI: 10.1007/s00775-007-0208-z.
  • Hosseinpour-Mashkani, S. M.; Ramezani, M. Silver and Silver Oxide Nanoparticles: Synthesis and Characterization by Thermal Decomposition. Mater. Lett. 2014, 130, 259–262. DOI: 10.1016/j.matlet.2014.05.133.
  • Bielmann, M.; Schwaller, P.; Ruffieux, P.; Gröning, O.; Schlapbach, L.; Gröning, P. AgO Investigated by Photoelectron Spectroscopy: Evidence for Mixed Valence. Phys. Rev. B 2002, 65, 235431. DOI: 10.1103/PhysRevB.65.235431.
  • Chatzimitakos, T. G.; Stalikas, C. D. Qualitative Alterations of Bacterial Metabolome after Exposure to Metal Nanoparticles with Bactericidal Properties: A Comprehensive Workflow Based on 1H NMR, UHPLC-HRMS, and Metabolic Databases. J. Proteom. Res. 2016, 15, 3322–3330. DOI: 10.1021/acs.jproteome.6b00489.
  • Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003.
  • Raghunath, A.; Perumal, E. Metal Oxide Nanoparticles as Antimicrobial Agents: A Promise for the Future. Int. J. Antimicrob. Agents 2017, 49, 137–152. DOI: 10.1016/j.ijantimicag.2016.11.011.
  • Saqib, S.; Munis, M.; Zaman, W.; Ullah, F.; Shah, S.; Ayaz, A.; Farooq, M.; Bahadur, S. Synthesis, Characterization and Use of Iron Oxide Nano Particles for Antibacterial Activity. Microsc. Res. Tech. 2019, 82, 415–420. DOI: 10.1002/jemt.23182.
  • Nandkumar, M. A.; Ranjit, M.; Kumar, S. P.; Hari, P.; Ramesh, P.; Sreenivasan, K. Antimicrobial Silver Oxide Incorporated Urinary Catheters for Infection Resistance. Trends Biomater. Artif. Organs 2010, 24, 156–164.
  • Wang, L.; Hu, C.; Shao, L. The Antimicrobial Activity of Nanoparticles: present Situation and Prospects for the Future. Int. J. Nanomed. 2017, 12, 1227. DOI: 10.2147/IJN.S121956.
  • Nayak, D.; Ashe, S.; Rauta, P. R.; Kumari, M.; Nayak, B. Bark Extract Mediated Green Synthesis of Silver Nanoparticles: Evaluation of Antimicrobial Activity and Antiproliferative Response against Osteosarcoma. Mater. Sci. Eng. C 2016, 58, 44–52. DOI: 10.1016/j.msec.2015.08.022.
  • Hernández‐Díaz, J. A.; Garza‐García, J. J.; Zamudio‐Ojeda, A.; León‐Morales, J. M.; López‐Velázquez, J. C.; García‐Morales, S. Plant‐Mediated Synthesis of Nanoparticles and Their Antimicrobial Activity against Phytopathogens. J. Sci. Food Agric. 2021, 101, 1270–1287. DOI: 10.1002/jsfa.10767.
  • Silva, L. P.; Reis, I. G.; Bonatto, C. C. Green Synthesis of Metal Nanoparticles by Plants: Current Trends and Challenges. In Green Processes for Nanotechnology; Basiuk, V., Basiuk, E., Eds.; Springer: Cham, 2015, 259-275. DOI: 10.1007/978-3-319-15461-9_9.
  • Iravani, S. Green Synthesis of Metal Nanoparticles Using Plants. Green Chem. 2011, 13, 2638–2650. DOI: 10.1039/c1gc15386b.
  • Surjushe, A.; Vasani, R.; Saple, D. G. Aloe Vera: A Short Review. Indian J. Dermatol. 2008, 53, 163–166. DOI: 10.4103/0019-5154.44785.
  • Hamman, J. Composition and Applications of Aloe Vera Leaf Gel. Molecules 2008, 13, 1599–1616. DOI: 10.3390/molecules13081599.
  • Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N. Eco-Friendly Microwave-Enhanced Green Synthesis of Silver Nanoparticles Using Aloe Vera Leaf Extract and Their Physico-Chemical and Antibacterial Studies. Green Process. Synth. 2018, 7, 231–240. DOI: 10.1515/gps-2017-0039.
  • Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe Vera Leaf Extract Mediated Green Synthesis of Selenium Nanoparticles and Assessment of Their in Vitro Antimicrobial Activity against Spoilage Fungi and Pathogenic Bacteria Strains. Green Process. Synth. 2019, 8, 399–407. DOI: 10.1515/gps-2019-0007.
  • Sohal, J. K.; Saraf, A.; Shukla, K.; Shrivastava, M. Determination of Antioxidant Potential of Biochemically Synthesized Silver Nanoparticles Using Aloe Vera Gel Extract. Plant Sci. Today 2019, 6, 208–217. DOI: 10.14719/pst.2019.6.2.532.
  • Hudzicki, J. Kirby–Bauer Disk Diffusion Susceptibility Test Protocol; ASM MicrobeLibrary. American Society for Microbiology: USA, 2009. http://www.microbelibrary.org/component/resource/laboratory-test/3189-kirby-bauer-diskdiffusion-susceptibility-test-protocol. (accessed Feb. 2016)
  • Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing, Massachusetts, USA, 1956.
  • Doebelin, N.; Kleeberg, R. Profex: A Graphical User Interface for the Rietveld Refinement Program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. DOI: 10.1107/S1600576715014685.
  • Flores-López, N. S.; Cortez-Valadez, M.; Moreno-Ibarra, G. M.; Larios-Rodríguez, E.; Torres-Flores, E. I.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Ramírez-Rodríguez, L. P.; Arizpe-Chávez, H.; Castro-Rosas, J.; et al. Silver Nanoparticles and Silver Ions Stabilized in NaCl Nanocrystals. Phys. E 2016, 84, 482–488., DOI: 10.1016/j.physe.2016.07.012.
  • Sharma, J.; Chaki, N. K.; Mandale, A. B.; Pasricha, R.; Vijayamohanan, K. Controlled Interlinking of Au and Ag Nanoclusters Using 4-Aminothiophenol as Molecular Interconnects. J. Colloid. Interface Sci. 2004, 272, 145–152. DOI: 10.1016/j.jcis.2003.09.016.
  • Zhang, Z.; Zhang, X.; Xin, Z.; Deng, M.; Wen, Y.; Song, Y. Synthesis of Monodisperse Silver Nanoparticles for Ink-Jet Printed Flexible Electronics. Nanotechnology 2011, 22, 425601. DOI: 10.1088/0957-4484/22/42/425601.
  • Hoflund, G. B.; Hazos, Z. F.; Salaita, G. N. Surface Characterization Study of Ag, AgO, and Ag2O Using X-Ray Photoelectron Spectroscopy and Electron Energy-Loss Spectroscopy. Phys. Rev. B 2000, 62, 11126–11133. DOI: 10.1103/PhysRevB.62.11126.
  • Zielińska, A.; Kowalska, E.; Sobczak, J. W.; Łącka, I.; Gazda, M.; Ohtani, B.; Hupka, J.; Zaleska, A. Silver-Doped TiO2 Prepared by Microemulsion Method: Surface Properties, Bio- and Photoactivity. Sep. Purif. Technol. 2010, 72, 309–318. DOI: 10.1016/j.seppur.2010.03.002.
  • Albiter, E.; Valenzuela, M. A.; Alfaro, S.; Valverde-Aguilar, G.; Martínez-Pallares, F. M. Photocatalytic Deposition of Ag Nanoparticles on TiO2: Metal Precursor Effect on the Structural and Photoactivity Properties. J. Saudi Chem. Soc. 2015, 19, 563–573. DOI: 10.1016/j.jscs.2015.05.009.
  • Peralta-Videa, J. R.; Huang, Y.; Parsons, J. G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J. A.; Gardea-Torresdey, J. L. Plant-Based Green Synthesis of Metallic Nanoparticles: Scientific Curiosity or a Realistic Alternative to Chemical Synthesis. Nanotechnol. Environ. Eng. 2016, 1, 4. DOI: 10.1007/s41204-016-0004-5.
  • Meikle, S. Silver-Doped Hydrogels for Wound Dressings, Wound Healing Biomaterials; Elsevier, 2016; pp 335–351.
  • Romaniuk, J.; Cegelski, L. Bacterial Cell Wall Composition and the Influence of Antibiotics by Cell-Wall and Whole-Cell NMR. Philos. T. Roy. Soc. B 2015, 370, 20150024.
  • Geffers, C.; Gastmeier, P. Nosocomial Infections and Multidrug-Resistant Organisms in Germany: epidemiological Data from KISS (the Hospital Infection Surveillance System). Dtsch. Arztebl. Int. 2011, 108, 87.
  • Staniszewska, M. Virulence Factors in Candida Species. Curr. Protein Pept. Sci. 2019, 20, 1–11.
  • Lee, B.; Lee, M. J.; Yun, S. J.; Kim, K.; Choi, I.-H.; Park, S. Silver Nanoparticles Induce Reactive Oxygen Species-Mediated Cell Cycle Delay and Synergistic Cytotoxicity with 3-Bromopyruvate in Candida albicans, but Not in Saccharomyces cerevisiae. Int J Nanomed. 2019, 14, 4801–4816. DOI: 10.2147/IJN.S205736.
  • Trofa, D.; Gácser, A.; Nosanchuk, J. D. Candida parapsilosis, an Emerging Fungal Pathogen. Clin. Microbiol. Rev. 2008, 21, 606–625. DOI: 10.1128/CMR.00013-08.
  • Singh, A.; Singh, P. K.; de Groot, T.; Kumar, A.; Mathur, P.; Tarai, B.; Sachdeva, N.; Upadhyaya, G.; Sarma, S.; Meis, J. F. Emergence of Clonal Fluconazole-Resistant Candida parapsilosis Clinical Isolates in a Multicentre Laboratory-Based Surveillance Study in India. J. Antimicrob. Chemother. 2019, 74, 1260–1268. DOI: 10.1093/jac/dkz029.
  • Shaffiey, S. R.; Shaffiey, S. F.; Ahmadi, M. Synthesis and evaluation of bactericidal properties of Ag2O nanoparticles against Aeromonas hydrophila. Int. J. Nano Dimens. 2015, 6, 263–269.
  • Dharmaraj, D.; Krishnamoorthy, M.; Rajendran, K.; Karuppiah, K.; Annamalai, J.; Durairaj, K. R.; Santhiyagu, P.; Ethiraj, K. Antibacterial and Cytotoxicity Activities of Biosynthesized Silver Oxide (Ag2O) Nanoparticles Using Bacillus Paramycoides. J. Drug Deliv. Sci. Technol. 2021, 61, 102111. DOI: 10.1016/j.jddst.2020.102111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.