Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 7
498
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Variable response of arsenic contaminated groundwater microbial community to electron acceptor regime revealed by microcosm based high-throughput sequencing approach

, , &
Pages 804-817 | Received 17 Feb 2021, Accepted 11 May 2021, Published online: 20 Jul 2021

References

  • Rahman, M. M.; Dong, Z.; Naidu, R. Concentrations of Arsenic and Other Elements in Groundwater of Bangladesh and West Bengal, India: Potential Cancer Risk. Chemosphere 2015, 139, 54–64. DOI: 10.1016/j.chemosphere.2015.05.051.
  • Podgorski, J.; Berg, M. Global Threat of Arsenic in Groundwater. Science 2020, 368, 845–850. DOI: 10.1126/science.aba1510.
  • Harvey, C. F.; Swartz, C. H.; Badruzzaman, A. B. M.; Keon-Blute, N.; Yu, W.; Ali, M. A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Groundwater Arsenic Contamination on the Ganges Delta: Biogeochemistry, Hydrology, Human Perturbations, and Human Suffering on a Large Scale. Comptes Rendus – Geosci. 2005, 337, 285–296. DOI: 10.1016/j.crte.2004.10.015.
  • Saunders, J. A.; Lee, M. K.; Uddin, A.; Mohammad, S.; Wilkin, R. T.; Fayek, M.; Korte, N. E. Natural Arsenic Contamination of Holocene Alluvial Aquifers by Linked Tectonic, Weathering, and Microbial Processes. Geochem. Geophys. Geosyst. 2005, 6, 1–7.
  • Islam, F. S.; Gault, A. G.; Boothman, C.; Polya, D. A.; Charnock, J. M.; Chatterjee, D.; Lloyd, J. R. Role of Metal-Reducing Bacteria in Arsenic Release from Bengal Delta Sediments. Nature 2004, 430, 68–71. DOI: 10.1038/nature02638.
  • Rowland, H. A. L.; Boothman, C.; Pancost, R.; Gault, A. G.; Polya, D. A.; Lloyd, J. R. The Role of Indigenous Microorganisms in the Biodegradation of Naturally Occurring Petroleum, the Reduction of Iron, and the Mobilization of Arsenite from West Bengal Aquifer Sediments. J. Environ. Qual. 2009, 38, 1598–1607. DOI: 10.2134/jeq2008.0223.
  • Sarkar, A.; Kazy, S. K.; Sar, P. Characterization of Arsenic Resistant Bacteria from Arsenic Rich Groundwater of West Bengal, India. Ecotoxicology 2013, 22, 363–376. DOI: 10.1007/s10646-012-1031-z.
  • Sarkar, A.; Paul, D.; Kazy, S. K.; Sar, P. Molecular Analysis of Microbial Community in Arsenic-Rich Groundwater of Kolsor, West Bengal. J. Environ. Sci. Heal. Part A: Toxic/Hazardous Subst. Environ. Eng. 2016, 51, 229–239.
  • Ghosh, D.; Bhadury, P.; Routh, J. Diversity of Arsenite Oxidizing Bacterial Communities in Arsenic-Rich Deltaic Aquifers in West Bengal, India. Front. Microbiol. 2014, 5, 1–14. DOI: 10.3389/fmicb.2014.00602.
  • Chakraborty, A.; DasGupta, C. K.; Bhadury, P. Diversity of Betaproteobacteria Revealed by Novel Primers Suggests Their Role in Arsenic Cycling. Heliyon 2020, 6, e03089. DOI: 10.1016/j.heliyon.2019.e03089.
  • Ghosh, S.; Sar, P. Identification and Characterization of Metabolic Properties of Bacterial Populations Recovered Fromarsenic Contaminated Ground Water of NorthEast India (Assam). Water Res. 2013, 47, 6992–7005. DOI: 10.1016/j.watres.2013.08.044.
  • Ghosh, S.; Gupta, A.; Sarkar, J.; Verma, S.; Sar, P. Toxic/Hazardous Substances and Environmental Engineering Enrichment of Indigenous Arsenate Reducing Anaerobic Bacteria from Arsenic Rich Aquifer Sediment of Brahmaputra River Basin and Their Potential Role in as Mobilization. J. Environ. Sci. Heal. Part A 2019, 54(7), 635–647. DOI: 10.1080/10934529.2019.1579524.
  • Layton, A. C.; Chauhan, A.; Williams, D. E.; Mailloux, B.; Knappett, P. S. K.; Ferguson, A. S.; McKay, L. D.; Jahangir Alam, M.; Ahmed, K. M.; Geen, A.; Van; Sayler, G. S. Metagenomes of Microbial Communities in Arsenic- and Pathogen-Contaminated Well and Surface Water from Bangladesh. Genome Announc. 2014, 2, 5–6.
  • Hassan, Z.; Sultana, M.; Breukelen, B. M. v.; Khan, S. I.; Röling, W. F. M. Diverse Arsenic-and Iron-Cycling Microbial Communities in Arsenic-Contaminated Aquifers Used for Drinking Water in Bangladesh. FEMS Microbiol. Ecol. 2015, 91, 1–17.
  • Hassan, Z.; Sultana, M.; Westerhoff, H.; V; Khan, S. I.; Röling, W. F. M.; Khan, S. I.; Wilfred, F. M. Iron Cycling Potentials of Arsenic Contaminated Groundwater in Bangladesh as Revealed by Enrichment Cultivation Iron Cycling Potentials of Arsenic Contaminated Groundwater in Bangladesh as. Geomicrobiol. J. 2016, 33, 779–792. DOI: 10.1080/01490451.2015.1111471.
  • Gnanaprakasam, E. T.; Lloyd, J. R.; Boothman, C.; Ahmed, K. M.; Choudhury, I.; Bostick, B. C.; Geen, A.; van; Mailloux, B. J. Microbial Community Structure and Arsenic Biogeochemistry in Two Arsenic-Impacted Aquifers in Bangladesh. Mbio. 2017, 8, 1–18. DOI: 10.1128/mBio.01326-17.
  • Hassan, Z.; Sultana, M.; Khan, S. I.; Braster, M.; Röling, W. F. M.; Westerhoff, H. V. Ample Arsenite Bio-Oxidation Activity in Bangladesh Drinking Water Wells: A Bonanza for Bioremediation? Microorganisms 2019, 7, 246. DOI: 10.3390/microorganisms7080246.
  • Wang, Y.; Li, P.; Jiang, Z.; Sinkkonen, A.; Wang, S.; Tu, J.; Wei, D.; Dong, H.; Wang, Y. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain. Inner Mongolia. Front. Microbiol. 2016, 7, 1–12.
  • Zhang, M.; Li, Z.; Häggblom, M. M.; Young, L.; He, Z.; Li, F.; Xu, R.; Sun, X.; Sun, W. Characterization of Nitrate-Dependent As(III)-Oxidizing Communities in Arsenic-Contaminated Soil and Investigation of Their Metabolic Potentials by the Combination of DNA-Stable Isotope Probing and Metagenomics. Environ. Sci. Technol. 2020, 54, 7366–7377. DOI: 10.1021/acs.est.0c01601.
  • Glodowska, M.; Stopelli, E.; Schneider, M.; Lightfoot, A.; Rathi, B.; Straub, D.; Patzner, M.; Duyen, V. T.; Berg, M.; Kleindienst, S.; Kappler, A, AdvectAs Team Members. Role of In Situ Natural Organic Matter in Mobilizing as during Microbial Reduction of FeIII-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam). Environ. Sci. Technol. 2020, 54, 4149–4159. DOI: 10.1021/acs.est.9b07183.
  • Das, S.; Liu, C. C.; Jean, J. S.; Liu, T. Dissimilatory Arsenate Reduction and In Situ Microbial Activities and Diversity in Arsenic-Rich Groundwater of Chianan Plain, Southwestern Taiwan. Microb. Ecol. 2016, 71, 365–374. DOI: 10.1007/s00248-015-0650-3.
  • Paul, D.; Kazy, S. K.; Gupta, A. K.; Pal, T.; Sar, P. Diversity, Metabolic Properties and Arsenic Mobilization Potential of Indigenous Bacteria in Arsenic Contaminated Groundwater of West Bengal, India. PLoS One. 2015, 10, e0118735. DOI: 10.1371/journal.pone.0118735.
  • Mohapatra, B.; Sarkar, A.; Joshi, S.; Chatterjee, A.; Kazy, S. K.; Maiti, M. K.; Satyanarayana, T.; Sar, P. An Arsenate-Reducing and Alkane-Metabolizing Novel Bacterium, Rhizobium Arsenicireducens sp. nov., Isolated from Arsenic-Rich Groundwater. Arch. Microbiol. 2017, 199, 191–201. DOI: 10.1007/s00203-016-1286-5.
  • Mohapatra, B.; Satyanarayana, T.; Sar, P. Molecular and Eco-Physiological Characterization of Arsenic (As)-Transforming Achromobacter sp. KAs 3–5T from as-Contaminated Groundwater of West Bengal, India. J. Environ. Sci. Heal. Part A: Toxic/Hazard. Subst. Environ. Eng. 2018, 53, 915–924.
  • Mohapatra, B.; Sar, P.; Kazy, S. K.; Maiti, M. K.; Satyanarayana, T. Taxonomy and Physiology of Pseudoxanthomonas arseniciresistens sp. nov., an Arsenate and Nitrate-Reducing Novel Gammaproteobacterium from Arsenic Contaminated Groundwater, India. PLoS One. 2018, 13, e0193718–18. DOI: 10.1371/journal.pone.0193718.
  • Ghosh, S.; Sar, P. Microcosm Based Analysis of Arsenic Release Potential of Bacillus sp. strain IIIJ3-1 under Varying Redox Conditions. World J. Microbiol. Biotechnol. 2020, 36(87), 1–19. DOI: 10.1007/s11274-020-02860-z.
  • Mohapatra, B.; Kazy, S. K.; Sar, P. Comparative Genome Analysis of Arsenic Reducing, Hydrocarbon Metabolizing Groundwater Bacterium Achromobacter sp. KAs 3-5T Explains Its Competitive Edge for Survival in Aquifer Environment. Genomics 2019, 111, 1604–1619. DOI: 10.1016/j.ygeno.2018.11.004.
  • Purkamo, L.; Bomberg, M.; Nyyssönen, M.; Ahonen, L.; Kukkonen, I.; Itävaara, M. Response of Deep Subsurface Microbial Community to Different Carbon Sources and Electron Acceptors during ∼2 Months Incubation in Microcosms. Front. Microbiol. 2017, 8, 232. DOI: 10.3389/fmicb.2017.00232.
  • Lear, G.; Song, B.; Gault, A. G.; Polya, D. A.; Lloyd, J. R. Molecular Analysis of Arsenate-Reducing Bacteria within Cambodian Sediments following Amendment with Acetate. Appl. Environ. Microbiol. 2007, 73, 1041–1048. DOI: 10.1128/AEM.01654-06.
  • Suhadolnik, M. L. S.; Salgado, A. P. C.; Scholte, L. L. S.; Bleicher, L.; Costa, P. S.; Reis, M. P.; Dias, M. F.; Ávila, M. P.; Barbosa, F. A. R.; Chartone-Souza, E.; Nascimento, A. M. A. Novel Arsenic-Transforming Bacteria and the Diversity of Their Arsenic-Related Genes and Enzymes Arising from Arsenic-Polluted Freshwater Sediment. Sci. Rep. 2017, 7, 1–17.
  • Chen, X.; Zeng, X. C.; Wang, J.; Deng, Y.; Ma, T.; Guoji, E.; Mu, Y.; Yang, Y.; Li, H.; Wang, Y. Microbial Communities Involved in Arsenic Mobilization and Release from the Deep Sediments into Groundwater in Jianghan Plain, Central China. Sci. Total Environ. 2017, 579, 989–999.
  • Cavalca, L.; Zecchin, S.; Zaccheo, P.; Abbas, B.; Rotiroti, M.; Bonomi, T.; Muyzer, G. Exploring Biodiversity and Arsenic Metabolism of Microbiota Inhabiting Arsenic-Rich Groundwaters in Northern Italy. Front. Microbiol. 2019, 10, 1–15. DOI: 10.3389/fmicb.2019.01480.
  • Mohapatra, B.; Saha, A.; Chowdhury, A. N.; Kar, A.; Kazy, S. K.; Sar, P. Geochemical, Metagenomic, and Physiological Characterization of the Multifaceted Interaction between Microbiome of an Arsenic Contaminated Groundwater and Aquifer Sediment. J. Hazard. Mater. 2021, 412, 125099. DOI: 10.1016/j.jhazmat.2021.125099.
  • Biswas, A.; Neidhardt, H.; Kundu, A. K.; Halder, D.; Chatterjee, D.; Berner, Z.; Jacks, G.; Bhattacharya, P. Spatial, Vertical and Temporal Variation of Arsenic in Shallow Aquifers of the Bengal Basin: Controlling Geochemical Processes. Chem. Geol. 2014, 387, 157–169. DOI: 10.1016/j.chemgeo.2014.08.022.
  • Ghosh, D.; Routh, J.; Bhadury, P. Sub-Surface Biogeochemical Characteristics and Its Effect on Arsenic Cycling in the Holocene Gray Sand Aquifers of the Lower Bengal Basin. Front. Environ. Sci. 2017, 5, 1–14. DOI: 10.3389/fenvs.2017.00082.
  • Kar, S.; Maity, J. P.; Jean, J. S.; Liu, C. C.; Nath, B.; Yang, H. J.; Bundschuh, J. Arsenic-Enriched Aquifers: Occurrences and Mobilization of Arsenic in Groundwater of Ganges Delta Plain, Barasat, West Bengal, India. Appl. Geochem. 2010, 25, 1805–1814. DOI: 10.1016/j.apgeochem.2010.09.007.
  • Paul, D.; Poddar, S.; Sar, P. Characterization of Arsenite-Oxidizing Bacteria Isolated from Arsenic-Contaminated Groundwater of West Bengal. J. Environ. Sci. Heal. Part A: Toxic/Hazard. Subst. Environ. Eng. 2014, 49, 1481–1492.
  • Caporaso, J. G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F. D.; Costello, E. K.; Fierer, N.; Peña, A. G.; Goodrich, J. K.; Gordon, J. I.; et al. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nat. Methods. 2010, 7, 335–336. DOI: 10.1038/nmeth.f.303.
  • Edgar, R. C. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 2010, 26, 2460–2461. DOI: 10.1093/bioinformatics/btq461.
  • Wang, Q.; Garrity, G. M.; Tiedje, J. M.; Cole, J. R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. DOI: 10.1128/AEM.00062-07.
  • Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F. O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013, 41, 590–596.
  • Heberle, H.; Meirelles, V. G.; Silva, F. R. d.; Telles, G. P.; Minghim, R. InteractiVenn: A Web-Based Tool for the Analysis of Sets through Venn Diagrams. BMC Bioinf. 2015, 16, 1–7. DOI: 10.1186/s12859-015-0611-3.
  • Louca, S.; Jacques, S. M. S.; Pires, A. P. F.; Leal, J. S.; Srivastava, D. S.; Parfrey, L. W.; Farjalla, V. F.; Doebeli, M. High Taxonomic Variability despite Stable Functional Structure across Microbial Communities. Nat. Ecol. Evol. 2016, 1, 15. DOI: 10.1038/s41559-016-0015.
  • Gupta, A.; Dutta, A.; Sarkar, J.; Panigrahi, M. K.; Sar, P. Low-Abundance Members of the Firmicutes Facilitate Bioremediation of Soil Impacted by Highly Acidic Mine Drainage from the Malanjkhand Copper Project. India. Front. Microbiol. 2018, 9, 1–18.
  • Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. DOI: 10.1093/molbev/msw054.
  • Subramanian, B.; Gao, S.; Lercher, M.; Hu, S.; Chen, W.-H. Evolview v3: A Webserver for Visualization, Annotation, and Management of Phylogenetic Trees. Nucleic Acids Res. 2019, 47(W1), W270–W275. DOI: 10.1093/nar/gkz357.
  • Quéméneur, M.;Heinrich-Salmeron, A.;Muller, D.;Lièvremont, D.;Jauzein, M.;Bertin, P. N.;Garrido, F.;Joulian, C. Diversity Surveys and Evolutionary Relationships of Aoxb Genes in Aerobic Arsenite-Oxidizing Bacteria. Appl. Environ. Microbiol. 2008, 74, 4567–4573. DOI:10.1128/AEM.02851-07.
  • Danczak, R. E.; Johnston, M. D.; Kenah, C.; Slattery, M.; Wilkins, M. J. Capability for Arsenic Mobilization in Groundwater is Distributed across Broad Phylogenetic Lineages. PLoS One. 2019, 14, e0221694–19. DOI: 10.1371/journal.pone.0221694.
  • Suresh, K.; Reddy, G. S. N.; Sengupta, S.; Shivaji, S. Deinococcus indicus sp. nov., an Arsenic-Resistant Bacterium from an Aquifer in West Bengal, India. Int. J. Syst. Evol. Microbiol. 2004, 54, 457–461. DOI: 10.1099/ijs.0.02758-0.
  • Gorra, R.; Webster, G.; Martin, M.; Celi, L.; Mapelli, F.; Weightman, A. J. Dynamic Microbial Community Associated with Iron-Arsenic Co-Precipitation Products from a Groundwater Storage System in Bangladesh. Microb. Ecol. 2012, 64, 171–186. DOI: 10.1007/s00248-012-0014-1.
  • Díaz, E. Bacterial Degradation of Aromatic Pollutants: A Paradigm of Metabolic Versatility. Int. Microbiol. Off. J. Spanish Soc. Microbiol. 2004, 7, 173–180.
  • Rotaru, A. E.; Probian, C.; Wilkes, H.; Harder, J. Highly Enriched Betaproteobacteria Growing Anaerobically with p-Xylene and Nitrate. FEMS Microbiol. Ecol. 2010, 71, 460–468. DOI: 10.1111/j.1574-6941.2009.00814.x.
  • Dong, X.; Greening, C.; Brüls, T.; Conrad, R.; Guo, K.; Blaskowski, S.; Kaschani, F.; Kaiser, M.; Laban, N. A.; Meckenstock, R. U. Fermentative Spirochaetes Mediate Necromass Recycling in Anoxic Hydrocarbon-Contaminated Habitats. Isme J. 2018, 12, 2039–2050. DOI: 10.1038/s41396-018-0148-3.
  • He, Y.; Li, M.; Perumal, V.; Feng, X.; Fang, J.; Xie, J.; Sievert, S. M.; Wang, F. Genomic and Enzymatic Evidence for Acetogenesis among Multiple Lineages of the Archaeal Phylum Bathyarchaeota Widespread in Marine Sediments. Nat. Microbiol. 2016, 1, 1–9.
  • Dong, X.; Greening, C.; Rattray, J. E.; Chakraborty, A.; Chuvochina, M.; Mayumi, D.; Dolfing, J.; Li, C.; Brooks, J. M.; Bernard, B. B.; et al. Metabolic Potential of Uncultured Bacteria and Archaea Associated with Petroleum Seepage in Deep-Sea Sediments. Nat. Commun. 2019, 10, 1–12.
  • Fortney, N. W.; He, S.; Kulkarni, A.; Friedrich, M. W.; Holz, C.; Boyd, E. S.; Roden, E. E. Stable Isotope Probing for Microbial Iron Reduction in Chocolate Pots Hot Spring, Yellowstone National Park. Appl. Environ. Microbiol. 2018, 84, 1–15.
  • Wang, H.; Byrne, J.; Liu, P.; Liu, J.; Dong, X.; Lu, Y. Redox Cycling of Fe(II) and Fe(III) in Magnetite Accelerates Aceticlastic Methanogenesis by Methanosarcina mazei. Environ. Microbiol. Rep. 2019, 12, 97–109. DOI: 10.1111/1758-2229.12819.
  • Kunapuli, U.; Lueders, T.; Meckenstock, R. U. The Use of Stable Isotope Probing to Identify Key Iron-Reducing Microorganisms Involved in Anaerobic Benzene Degradation. Isme J. 2007, 1, 643–653. DOI: 10.1038/ismej.2007.73.
  • Beal, E. J.; House, C. H.; Orphan, V. J. Manganese- and Iron-Dependent Marine Methane Oxidation. Science 2009, 325, 184–187. DOI: 10.1126/science.1169984.
  • Hori, T.; Aoyagi, T.; Itoh, H.; Narihiro, T.; Oikawa, A.; Suzuki, K.; Ogata, A.; Friedrich, M. W.; Conrad, R.; Kamagata, Y. Isolation of Microorganisms Involved in Reduction of Crystalline Iron(III) Oxides in Natural Environments. Front. Microbiol. 2015, 6, 1–16. DOI: 10.3389/fmicb.2015.00386.
  • Chauhan, D.; Srivastava, P. A.; Yennamalli, R. M.; Priyadarshini, R. Draft genome sequence of Deinococcus indicus DR1, a novel strain isolated from a freshwater wetland.Genome Announc. 2017, 5, e00754–17. DOI: 10.1128/genomeA.00754-17.
  • Newman, D. K.; Kennedy, E. K.; Coates, J. D.; Ahmann, D.; Ellis, D. J.; Lovley, D. R.; Morel, F. M. M. Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 1997, 168, 380–388. DOI: 10.1007/s002030050512.
  • Pérez-Jiménez, J. R.; DeFraia, C.; Young, L. Y. Arsenate Respiratory Reductase Gene (arrA) for Desulfosporosinus sp. strain Y5. Biochem. Biophys. Res. Commun. 2005, 338, 825–829. DOI: 10.1016/j.bbrc.2005.10.011.
  • Sela-Adler, M.; Ronen, Z.; Herut, B.; Antler, G.; Vigderovich, H.; Eckert, W.; Sivan, O. Co-Existence of Methanogenesis and Sulfate Reduction with Common Substrates in Sulfate-Rich Estuarine Sediments. Front. Microbiol. 2017, 8, 1–11. DOI: 10.3389/fmicb.2017.00766.
  • Delgado, A. G.; Parameswaran, P.; Fajardo-Williams, D.; Halden, R. U.; Krajmalnik-Brown, R. Role of Bicarbonate as a pH Buffer and Electron Sink in Microbial Dechlorination of Chloroethenes. Microb. Cell Fact 2012, 11(128), 1–10. DOI: 10.1186/1475-2859-11-128.
  • Fukunaga, Y.; Ichikawa, N. The Class Holophagaceae BT. In The Prokaryotes: Other Major Lineages of Bacteria and the Archaea. Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., Thompson, F., Eds. Springer: Berlin, Heidelberg, 2014; pp. 683–687.
  • Santini, J. M.; Sly, L. I.; Schnagl, R. D.; Macy, J. M. A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine: Phylogenetic, Physiological, and Preliminary Biochemical Studies. Appl. Environ. Microbiol. 2000, 66, 92–97. DOI: 10.1128/aem.66.1.92-97.2000.
  • Janssen, P. J.; Houdt, R.; van; Moors, H.; Monsieurs, P.; Morin, N.; Michaux, A.; Benotmane, M. A.; Leys, N.; Vallaeys, T.; Lapidus, A.; Monchy.; et al. The Complete Genome Sequence of Cupriavidus metallidurans Strain CH34, a Master Survivalist in Harsh and Anthropogenic Environments. PLoS One. 2010, 5, e10433. DOI: 10.1371/journal.pone.0010433.
  • Fuller, S. J.; Burke, I. T.; McMillan, D. G. G.; Ding, W.; Stewart, D. I. Population Changes in a Community of Alkaliphilic Iron-Reducing Bacteria Due to Changes in the Electron Acceptor: Implications for Bioremediation at Alkaline Cr(VI)-Contaminated Sites. Water. Air. Soil Pollut. 2015, 226(180), 1–15. DOI: 10.1007/s11270-015-2437-z.
  • Sun, W.; Sierra, R.; Field, J. A. Anoxic Oxidation of Arsenite Linked to Denitrification in Sludges and Sediments. Water Res. 2008, 42, 4569–4577. DOI: 10.1016/j.watres.2008.08.004.
  • Chakraborty, A.; Picardal, F. Neutrophilic, Nitrate-Dependent, Fe(II) Oxidation by a Dechloromonas Species. World J. Microbiol. Biotechnol. 2013, 29, 617–623. DOI: 10.1007/s11274-012-1217-9.
  • Carlson, H. K.; Clark, I. C.; Blazewicz, S. J.; Iavarone, A. T.; Coates, J. D. Fe(II) Oxidation is an Innate Capability of Nitrate-Reducing Bacteria That Involves Abiotic and Biotic Reactions. J. Bacteriol. 2013, 195, 3260–3268. DOI: 10.1128/JB.00058-13.
  • Chakraborty, R.; O’Connor, S. M.; Chan, E.; Coates, J. D. Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and Xylene Compounds by Dechloromonas Strain RCB Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and Xylene Compounds by Dechloromonas Strain RCB. J. Anim. Sci. 2007, 85, 321.
  • Hohmann, C.; Winkler, E.; Morin, G.; Kappler, A. Anaerobic Fe(II)-Oxidizing Bacteria Show as Resistance and Immobilize as during Fe(III) Mineral Precipitation. Environ. Sci. Technol. 2010, 44, 94–101. DOI: 10.1021/es900708s.
  • Taubert, M.; Vogt, C.; Wubet, T.; Kleinsteuber, S.; Tarkka, M. T.; Harms, H.; Buscot, F.; Richnow, H. H.; Bergen, M. V.; Seifert, J. Protein-SIP Enables Time-Resolved Analysis of the Carbon Flux in a Sulfate-Reducing, Benzene-Degrading Microbial Consortium. Isme J. 2012, 6, 2291–2301. DOI: 10.1038/ismej.2012.68.
  • Zaan, B. M. v d.; Saia, F. T.; Stams, A. J. M.; Plugge, C. M.; Vos, W. M. d.; Smidt, H.; Langenhoff, A. A. M.; Gerritse, J. Anaerobic Benzene Degradation under Denitrifying Conditions: Peptococcaceae as Dominant Benzene Degraders and Evidence for a Syntrophic Process. Environ. Microbiol. 2012, 14, 1171–1181. DOI: 10.1111/j.1462-2920.2012.02697.x.
  • Shelobolina, E. S.; Nevin, K. P.; Blakeney-Hayward, J. D.; Johnsen, C. V.; Plaia, T. W.; Krader, P.; Woodard, T.; Holmes, D. E.; VanPraagh, C. G.; Lovley, D. R. Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans Gen. nov., sp. nov., Isolated from Subsurface Kaolin Lenses. Int. J. Syst. Evol. Microbiol. 2007, 57, 126–135. DOI: 10.1099/ijs.0.64221-0.
  • Ohtsuka, T.; Yamaguchi, N.; Makino, T.; Sakurai, K.; Kimura, K.; Kudo, K.; Homma, E.; Dong, D. T.; Amachi, S. Arsenic Dissolution from Japanese Paddy Soil by a Dissimilatory Arsenate-Reducing Bacterium Geobacter sp. OR-1. Environ. Sci. Technol. 2013, 47, 6263–6271. DOI: 10.1021/es400231x.
  • Tsuchiya, T.; Ehara, A.; Kasahara, Y.; Hamamura, N.; Amachi, S. Expression of Genes and Proteins Involved in Arsenic Respiration and Resistance in Dissimilatory Arsenate-Reducing Geobacter sp. Strain OR-1. Appl. Environ. Microbiol. 2019, 85, e00763-19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.