Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 8
124
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Polyacrylic acid-b-polyptyrene covered Ni/Fe nanoparticles to remove 1,1,1-trichloroethane in water

Pages 928-936 | Received 27 Aug 2020, Accepted 03 Jun 2021, Published online: 30 Jun 2021

References

  • Balouet, J.; Burken, J.; Karg, F.; Vroblesky, D.; Smith, K.; Grudd, H.; Rindby, A.; Beaujard, F.; Chalot, M. Dendrochemistry of Multiple Releases of Chlorinated Solvents at a Former Industrial site. Environ. Sci. Technol. 2012, 46, 9541–9547.
  • Scheutz, C.; Durant, N.; Hansen, M.; Bjerg, P. Natural and Enhanced Anaerobic Degradation of 1,1,1-Trichloroethane and Its Degradation Products in the Subsurface–A Critical Review. Water Res. 2011, 45, 2701–2723.
  • Fennelly, J.; Roberts, A. Reaction of 1,1,1-Trichloroethane with Zero-Valent Metals and Bimetallic Reductants. Environ. Sci. Technol. 2018, 32, 1980–1988.
  • Wu, X.; Lu, S.; Qiu, Z.; Sui, Q.; Lin, K.; Du, X.; Luo, Q. The Reductive Degradation of 1,1,1-Trichloroethane by Fe(0) in a Soil Slurry System. Environ. Sci. Pollut. Res. Int. 2014, 21, 1401–1410.
  • Han, J.; Xin, J.; Zheng, X.; Kolditz, O.; Shao, H. Remediation of Trichloroethylene-Contaminated Groundwater by Three Modifier-Coated Microscale Zero-Valent Iron. Environ. Sci. Pollut. Res. Int. 2016, 23, 14442–14450.
  • Takeuchi, M.; Kawabe, Y.; Watanabe, E.; Oiwa, T.; Takahashi, M.; Nanba, K.; Kamagata, Y.; Hanada, S.; Ohko, Y.; Komai, T. Comparative Study of Microbial Dechlorination of Chlorinated Ethenes in an Aquifer and a Clayey Aquitard. J. Contam. Hydrol. 2011, 124, 14–24.
  • Ebert, M.; Köber, R.; Parbs, A.; Plagentz, V.; Schäfer, D.; Dahmke, A. Assessing Degradation Rates of Chlorinated Ethylenes in Column Experiments with Commercial Iron Materials Used in Permeable Reactive Barriers. Environ. Sci. Technol. 2006, 40, 2004–2010.
  • Sakulchaicharoen, N.; O'Carroll, D.; Herrera, J. Enhanced Stability and Dechlorination Activity of Pre-Synthesis Stabilized Nanoscale FePd Particles. J. Contam. Hydrol. 2010, 118, 117–127.
  • Choi, J.; Kim, Y.; Choi, S. Reductive Dechlorination and Biodegradation of 2,4,6-Trichlorophenol Using Sequential Permeable Reactive Barriers: laboratory Studies. Chemosphere 2017, 67, 1551–1557. DOI: 10.1016/j.chemosphere.2006.12.029.
  • Gandhi, S.; Oh, B.; Schnoor, J.; Alvarez, P. Degradation of TCE, Cr(VI), Sulfate, and Nitrate Mixtures by Granular Iron in Flow-through Columns under Different Microbial Conditions. Water Res. 2002, 36, 1973–1982. DOI: 10.1016/s0043-1354(01)00409-2.
  • Chen, S.; Bedia, J.; Li, H.; Ren, L.; Naluswata, F.; Belver, C. Nanoscale Zero-Valent Iron@Mesoporous Hydrated Silica Core-Shell Particles with Enhanced Dispersibility, Transportability and Degradation of Chlorinated Aliphatic Hydrocarbons. Chem. Eng. J. 2018, 343, 619–628.
  • Pasinszki, T.; Krebsz, M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomaterials 2020, 10, 917.
  • Fu, F.; Dionysiou, D.; Liu, H. The Use of Zero-Valent Iron for Groundwater Remediation and Wastewater Treatment: A Review. J. Hazard. Mater. 2014, 267, 194–205. DOI: 10.1016/j.jhazmat.2013.12.062.
  • Bhattacharjee, S.; Ghoshal, S. Phase Transfer of Palladized Nanoscale Zerovalent Iron for Environmental Remediation of Trichloroethene. Environ. Sci. Technol. 2016, 50, 8631–8639. DOI: 10.1021/acs.est.6b01646.
  • Wang, Y.; Zhao, H.; Zhao, G. Iron-Copper Bimetallic Nanoparticles Embedded within Ordered Mesoporous Carbon as Effective and Stable Heterogeneous Fenton Catalyst for the Degradation of Organic Contaminants. Appl. Catal. B 2015, 164, 396–406. DOI: 10.1016/j.apcatb.2014.09.047.
  • Pisiewicz, S.; Formenti, D.; Surkus, A.; Pohl, M.; Radnik, J.; Junge, K.; Topf, C.; Bachmann, S.; Scalone, M.; Beller, M. Synthesis of Nickel Nanoparticles with N-Doped Graphene Shells for Catalytic Reduction Reactions. ChemCatChem 2016, 8, 129–134. DOI: 10.1002/cctc.201500848.
  • Liu, Y.; Lowry, G. Effect of Particle Age (Fe0 Content) and Solution pH on NZVI Reactivity: H2 Evolution and TCE Dechlorination. Environ. Sci. Technol. 2006, 40, 6085–6090. DOI: 10.1021/es060685o.
  • Reinsch, B.; Forsberg, B.; Penn, R.; Kim, C.; Lowry, G. Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents. Environ. Sci. Technol. 2010, 44, 3455–3461.
  • Yang, J.; Zhu, M.; Wang, X.; Alvarez, P.; Liu, K. Poly(Vinylidene Fluoride) Membrane Supported Nano Zero-Valent Iron for Metronidazole Removal: Influences of Calcium and Bicarbonate Ions. J. Taiwan Inst. Chem. Eng. 2015, 49, 113–118.
  • Kerkez, D.; Tomasevic, D.; Kozma, G.; Becelic-Tomin, M.; Prica, M.; Roncevic, S.; Kukovecz, Á.; D.Dalmacija, B.; Kónyabe, Z. Three Different Clay-Supported Nanoscale Zero-Valent Iron Materials for Industrial Azo Dye Degradation: A Comparative Study. J. Taiwan. Inst. Chem. Eng. 2014, 45, 2451–2461.
  • Kumar, M.; Bae, S.; Han, S.; Chang, Y.; Lee, W. Reductive Dechlorination of Trichloroethylene by Polyvinylpyrrolidone Stabilized Nanoscale Zerovalent Iron Particles with Ni. J. Hazard. Mater. 2017, 340, 399–406.
  • Chang, J.; Woo, H.; Ko, M.; Lee, J.; Lee, S.; Yun, S.; Lee, S. Targeted Removal of Trichlorophenol in Water by Oleic Acid-Coated Nanoscale Palladium/Zero-Valent Iron Alginate Beads. J. Hazard. Mater. 2015, 293, 30–36.
  • Kanel, S.; Choi, H. Transport Characteristics of Surface-Modified Nanoscale Zero-Valent Iron in Porous Media. Water Sci. Technol. 2007, 55, 157–162.
  • Tang, C.; Qi, K.; Wooley, K.; Matyjaszewski, K.; Kowalewski, T. Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-Linked Micelles That Contain Polyacrylonitrile Cores. Angew. Chem. 2004, 116, 2843–2847.
  • Boyer, C.; Boutevin, G.; Robin, J.; Boutevin, B. Synthesis of Macromonomers of Acrylic Acid by Telomerization: Application to the Synthesis of Polystyrene-g-Poly(Acrylic Acid) Copolymers. J. Polym. Sci. Pol. Chem. 2007, 45, 395–415.
  • Li, T.; Li, S.; Li, Y.; Jin, Z. Dechlorination of Trichloroethylene in Groundwater by Nanoscale Bimetallic Fe/Pd Particles. J. Water Res. Pro. 2009, 01, 78–83.
  • Niu, D.; Li, Y.; Ma, Z.; Diao, H.; Gu, J.; Chen, H.; Zhao, W.; Ruan, M.; Zhang, Y.; Shi, J. Preparation of Uniform, Water-Soluble, and Multifunctional Nanocomposites with Tunable Sizes. Adv. Func. Mater. 2010, 20, 773–780.
  • Xu, J.; Lv, X.; Li, J.; Li, Y.; Shen, L.; Zhou, H.; Xu, X. Simultaneous Adsorption and Dechlorination of 2,4-Dichlorophenol by Pd/Fe Nanoparticles with Multi-Walled Carbon Nanotube Support. J. Hazard. Mater. 2012, 225-226, 36–45.
  • Sahu, R.; Li, D.; Doong, R. Unveiling the Hydrodechlorination of Trichloroethylene by Reduced Graphene Oxide Supported Bimetallic Fe/Ni Nanoparticles. Chem. Eng. J. 2018, 334, 30–40.
  • Li, H.; Qiu, Y.; Wang, X.; Yang, J.; Yu, Y.; Chen, Y.; Liu, Y. Biochar Supported Ni/Fe Bimetallic Nanoparticles to Remove 1,1,1-Trichloroethane under Various Reaction Conditions. Chemosphere 2017, 169, 534–541. DOI: 10.1016/j.chemosphere.2016.11.117.
  • Cho, Y.; Choi, S. I. Degradation of PCE, TCE and 1,1,1-TCA by Nanosized FePd Bimetallic Particles under Various Experimental Conditions. Chemosphere 2010, 81, 940–945. DOI: 10.1016/j.chemosphere.2010.07.054.
  • Barnes, R.; Riba, O.; Gardner, M.; Scott, T.; Jackman, S.; Thompson, I. Optimization of Nano-Scale Nickel/Iron Particles for the Reduction of High Concentration Chlorinated Aliphatic Hydrocarbon Solutions. Chemosphere 2010, 79, 448–454. DOI: 10.1016/j.chemosphere.2010.01.044.
  • Song, H.; Carraway, E. Reduction of Chlorinated Ethanes by Nanosized Zero-Valent Iron: Kinetics, Pathways, and Effects of Reaction Conditions. Environ. Sci. Technol. 2005, 39, 6237–6245.
  • O’Carroll, D.; Sleep, B.; Krol, M.; Boparai, H.; Kocur, C. Nanoscale Zero Valent Iron and Bimetallic Particles for Contaminated Site Remediation. Adv. Water. Res 2013, 51, 104–122.
  • Jiang, Z.; Lv, L.; Zhang, W.; Du, Q.; Pan, B.; Yang, L.; Zhang, Q. Nitrate Reduction Using Nanosized Zero-Valent Iron Supported by Polystyrene Resins: Role of Surface Functional Groups. Water Res. 2011, 45, 2191–2198. DOI: 10.1016/j.watres.2011.01.005.
  • Dong, T.; Luo, H.; Wang, Y.; Hu, B.; Chen, H. Stabilization of Fe–Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Catalytic Reduction of Para-Nitrochlorobenzene in Water. Desalination 2011, 271, 11–19. DOI: 10.1016/j.desal.2010.12.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.