Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 56, 2021 - Issue 12
187
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of size and surface chemistry of gold nanoparticles on their retention in a sediment-water system and Lumbriculus variegatus

, , ORCID Icon, , &
Pages 1347-1355 | Received 18 Feb 2020, Accepted 11 Oct 2021, Published online: 28 Oct 2021

References

  • Umapathi, A.; Kumawat, M.; Daima, H. K. Engineered Nanomaterials for Biomedical Applications and Their Toxicity: A Review. Environ Chem. Lett. 2021 (in press). DOI: https://doi.org/10.1007/s10311-021-01307-7.
  • Talarska, P.; Boruczkowski, M.; Żurawski, J. Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. Nanomaterials (Basel, Switzerland). 2021, 11, 2454. DOI: https://doi.org/10.3390/nano11092454.
  • Cross, R. K.; Tyler, C. R.; Galloway, T. S. The Fate of Cerium Oxide Nanoparticles in Sediments and Their Routes of Uptake in a Freshwater Worm. Nanotoxicology 2019, 13, 894–908. DOI: https://doi.org/10.1080/17435390.2019.1593540.
  • Li, L.; Wang, Y.; Liu, Q.; Jiang, G. Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III). Environ. Sci. Technol. 2016, 50(1), 188–196. DOI: https://doi.org/10.1021/acs.est.5b03982.
  • Li, L.; Zhou, Q.; Geng, F.; Wang, Y.; Jiang, G. Formation of Nanosilver from Silver Sulfide Nanoparticles in Natural Waters by Photoinduced Fe(II, III) Redox Cycling. Environ. Sci. Technol. 2016, 50, 13342–13350.
  • Liu, J.; Wang, Z.; Liu, F. D.; Kane, A. B.; Hurt, R. H. Chemical Transformations of Nanosilver in Biological Environments. ACS Nano. 2012, 6, 9887–9899.
  • Peters, R. J. B.; van Bemmel, G.; Milani, N. B. L.; den Hertog, G. C. T.; Undas, A. K.; van der Lee, M.; Bouwmeester, H. Detection of Nanoparticles in Dutch Surface Waters. Sci. Total Environ. 2018, 621, 210–218.
  • Bauerlein, P. S.; Emke, E.; Tromp, P.; Hofman, J.; Carboni, A.; Schooneman, F.; de Voogt, P.; van Wezel, A. P. Is There Evidence for Man-Made Nanoparticles in the Dutch Environment? Sci. Total Environ. 2017, 576, 273–283. DOI: https://doi.org/10.1016/j.scitotenv.2016.09.206.
  • Enea, M.; Pereira, E.; de Almeida, M. P.; Araujo, A. M.; Bastos, M. D.; Carmo, H. Gold Nanoparticles Induce Oxidative Stress and Apoptosis in Human Kidney Cells. Nanomaterials 2020, 1010, 995. DOI: https://doi.org/10.3390/nano10050995.
  • Bohme, S.; Baccaro, M.; Schmidt, M.; Potthoff, A.; Stark, H. J.; Reemtsma, T.; Kuhnel, D. Metal Uptake and Distribution in the Zebrafish (Danio rerio) Embryo: Differences between Nanoparticles and Metal Ions. Environ. Sci: Nano 2017, 4, 1005–1015. DOI: https://doi.org/10.1039/C6EN00440G.
  • Nickel, C.; Gabsch, S.; Hellack, B.; Nogowski, A.; Babick, F.; Stintz, M.; Kuhlbusch, T. A. J. Mobility of Coated and Uncoated TiO2 Nanomaterials in Soil Columns-Applicability of the Tests Methods of OECD TG 312 and 106 for Nanomaterials. J. Environ. Manage. 2015, 157, 230–237. DOI: https://doi.org/10.1016/j.jenvman.2015.04.029.
  • Li, S.; Wallis, L. K.; Diamond, S. A.; Ma, H.; Hoff, D. J. Species Sensitivity and Dependence on Exposure Conditions Impacting the Phototoxicity of TiO2 Nanoparticles to Benthic Organisms. Environ. Toxicol. Chem. 2014, 33, 1563–1569.
  • Hund-Rinke, K.; Baun, A.; Cupi, D.; Fernandes, T. F.; Handy, R.; Kinross, J. H.; Navas, J. M.; Peijnenburg, W.; Schlich, K.; Shaw, B. J.; Scott-Fordsmand, J. J. Regulatory Ecotoxicity Testing of Nanomaterials - Proposed Modifications of OECD Test Guidelines Based on Laboratory Experience with Silver and Titanium Dioxide Nanoparticles. Nanotoxicology 2016, 10, 1442–1447.
  • Avellan, A.; Yun, J.; Zhang, Y. L.; Spielman-Sun, E.; Unrine, J. M.; Thieme, J.; Li, J. R.; Lombi, E.; Bland, G.; Lowry, G. V. Nanoparticle Size and Coating Chemistry Control Foliar Uptake Pathways, Translocation, and Leaf-to-Rhizosphere Transport in Wheat. ACS Nano 2019, 13, 5291–5305. DOI: https://doi.org/10.1021/acsnano.8b09781.
  • Rajala, J. E.; Vehniainen, E. R.; Vaisanen, A.; Kukkonen, J. V. K. Toxicity of Silver Nanoparticles to Lumbriculus variegatus is a Function of Dissolved Silver and Promoted by Low Sediment pH. Environ. Toxicol. Chem. 2018, 37, 1889–1897.
  • Luo, P.; Roca, A.; Tiede, K.; Privett, K.; Jiang, J.; Pinkstone, J.; Ma, G.; Veinot, J.; Boxall, A. Application of Nanoparticle Tracking Analysis for Characterising the Fate of Engineered Nanoparticles in Sediment-Water Systems. J. Environ. Sci. 2018, 64, 62–71. DOI: https://doi.org/10.1016/j.jes.2016.07.019.
  • Marisca, O. T.; Kantner, K.; Pfeiffer, C.; Zhang, Q.; Pelaz, B.; Leopold, N.; Parak, W. J.; Rejman, J. Comparison of the in Vitro Uptake and Toxicity of Collagen- and Synthetic Polymer-Coated Gold Nanoparticles. Nanomaterials (Basel) 2015, 5, 1418–1430.
  • Freese, C.; Gibson, M. I.; Klok, H.-A.; Unger, R. E.; Kirkpatrick, C. J. Size- and Coating-Dependent Uptake of Polymer-Coated Gold Nanoparticles in Primary Human Dermal Microvascular Endothelial Cells. Biomacromolecules 2012, 13, 1533–1543.
  • Fleischer, C. C.; Payne, C. K. Nanoparticle–Cell Interactions: molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem. Res. 2014, 47, 2651–2659.
  • Oh, E.; Delehanty, J. B.; Sapsford, K. E.; Susumu, K.; Goswami, R.; Blanco-Canosa, J. B.; Dawson, P. E.; Granek, J.; Shoff, M.; Zhang, Q.; et al. Cellular Uptake and Fate of Pegylated Gold Nanoparticles is Dependent on Both Cell-Penetration Peptides and Particle Size. ACS Nano. 2011, 5, 6434–6448.
  • Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P. C.; et al. Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors in Vivo. ACS Nano. 2012, 6, 4483–4493.
  • Truong, L.; Zaikova, T.; Richman, E. K.; Hutchison, J. E.; Tanguay, R. L. Media Ionic Strength Impacts Embryonic Responses to Engineered Nanoparticle Exposure. Nanotoxicology 2012, 6, 691–699.
  • Bar-Ilan, O.; Albrecht, R. M.; Fako, V. E.; Furgeson, D. Y. Toxicity Assessments of Multisized Gold and Silver Nanoparticles in Zebrafish Embryos. Small 2009, 5, 1897–1910.
  • Park, S.; Woodhall, J.; Ma, G.; Veinot, J. G. C.; Cresser, M. S.; Boxall, A. B. A. Regulatory Ecotoxicity Testing of Engineered Nanoparticles: Are the Results Relevant to the Natural environment? Nanotoxicology 2014, 8, 583–592.
  • Park, S.; Woodhall, J.; Ma, G.; Veinot, J. G.; Boxall, A. B. Do Particle Size and Surface Functionality Affect Uptake and Depuration of Gold Nanoparticles by Aquatic Invertebrates? Environ. Toxicol. Chem. 2015, 34, 850–859.
  • Luo, P.; Morrison, I.; Dudkiewicz, A.; Tiede, K.; Boyes, E.; O'Toole, P.; Park, S.; Boxall, A. B. Visualization and Characterization of Engineered Nanoparticles in Complex Environmental and Food Matrices Using Atmospheric Scanning Electron Microscopy. J. Microsc. 2013, 250, 32–41.
  • Liu, J.; Legros, S.; Ma, G.; Veinot, J. G. C.; von der Kammer, F.; Hofmann, T. Influence of Surface Functionalization and Particle Size on the Aggregation Kinetics of Engineered Nanoparticles. Chemosphere 2012, 87, 918–924. DOI: https://doi.org/10.1016/j.chemosphere.2012.01.045.
  • Skjolding, L. M.; Kern, K.; Hjorth, R.; Hartmann, N.; Overgaard, S.; Ma, G.; Veinot, J. G. C.; Baun, A. Uptake and Depuration of Gold Nanoparticles in Daphnia Magna. Ecotoxicology 2014, 23, 1172–1183.
  • Frens, G. Controlled Nucleation for Regulation of Particle-Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. DOI: https://doi.org/10.1038/physci241020a0.
  • Test no.315: OECD 315: Bioaccumulation in Sediment-Dwelling Benthic Oligochaetes. 2010.
  • Simon, R.; Buth, G.; Hagelstein, M. The X-Ray-Fluorescence Facility at ANKA, Karlsruhe: Minimum Detection Limits and Micro Probe Capabilities. Nucl. Instrum. Methods. Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2003, 199, 554–558. DOI: https://doi.org/10.1016/S0168-583X(02)01418-0.
  • Kuhn, L. C. Iron Regulatory Proteins and Their Role in Controlling Iron Metabolism. Metallomics 2015, 7, 232–243.
  • Solé, V. A.; Papillon, E.; Cotte, M.; Walter, P.; Susini, J. A Multiplatform Code for the Analysis of Energy-Dispersive X-Ray Fluorescence Spectra. Spectroc. Acta Pt. B-Atom. Spectr. 2007, 62, 63–68. DOI: https://doi.org/10.1016/j.sab.2006.12.002.
  • Jackson, B. P.; Williams, P. L.; Lanzirotti, A.; Bertsch, P. M. Evidence for Biogenic Pyromorphite Formation by the Nematode Caenorhabditis elegans. Environ. Sci. Technol. 2005, 39, 5620–5625.
  • Jackson, B. P.; Pace, H. E.; Lanzirotti, A.; Smith, R.; Ranville, J. F. Synchrotron X-Ray 2D and 3D Elemental Imaging of CdSe/ZnS Quantum Dot Nanoparticles in Daphnia Magna. Anal. Bioanal. Chem. 2009, 394, 911–917. DOI: https://doi.org/10.1007/s00216-009-2768-y.
  • Kumar, A. A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S. Water Quality Monitoring: A Comparative Case Study of Municipal and Curtin Sarawak's Lake Samples. IOP Conf. Ser: Mater. Sci. Eng. 2016, 121, 012019. DOI: https://doi.org/10.1088/1757-899X/121/1/012019.
  • Pearson, R. G. The HSAB principle – More Quantitative Aspects. Inorganica. Chim. Acta 1995, 240, 93–98. DOI: https://doi.org/10.1016/0020-1693(95)04648-8.
  • Bozich, J. S.; Lohse, S. E.; Torelli, M. D.; Murphy, C. J.; Hamers, R. J.; Klaper, R. D. Surface Chemistry, Charge and Ligand Type Impact the Toxicity of Gold Nanoparticles to Daphnia Magna. Environ. Sci. Nano 2014, 1, 260–270. DOI: https://doi.org/10.1039/C4EN00006D.
  • Khan, F. R.; Kennaway, G. M.; Croteau, M.-N.; Dybowska, A.; Smith, B. D.; Nogueira, A. J. A.; Rainbow, P. S.; Luoma, S. N.; Valsami-Jones, E. In Vivo Retention of Ingested Au NPs by Daphnia Magna: No Evidence for Trans-Epithelial Alimentary Uptake. Chemosphere 2014, 100, 97–104. DOI: https://doi.org/10.1016/j.chemosphere.2013.12.051.
  • Feswick, A.; Griffitt, R. J.; Siebein, K.; Barber, D. S. Uptake, Retention and Internalization of Quantum Dots in Daphnia is Influenced by Particle Surface Functibnalization. Aquat. Toxicol 2013, 130, 210–218.
  • Volland, M.; Hampel, M.; Martos-Sitcha, J. A.; Trombini, C.; Martinez-Rodriguez, G.; Blasco, J. Citrate Gold Nanoparticle Exposure in the Marine Bivalve Ruditapes philippinarum: uptake, Elimination and Oxidative Stress Response. Environ. Sci. Pollut. Res. Int. 2015, 22, 17414–17424.
  • Oliver, A. L.-S.; Croteau, M.-N.; Stoiber, T. L.; Tejamaya, M.; Römer, I.; Lead, J. R.; Luoma, S. N. Does Water Chemistry Affect the Dietary Uptake and Toxicity of Silver Nanoparticles by the Freshwater Snail Lymnaea stagnalis? Environ. Pollut. 2014, 189, 87–91.
  • Glover, C. N.; Wood, C. M. Accumulation and Elimination of Silver in Daphnia Magna and the Effect of Natural Organic Matter. Aquat. Toxicol. 2005, 73, 406–417.
  • Lovern, S. B.; Owen, H. A.; Klaper, R. Electron Microscopy of Gold Nanoparticle Intake in the Gut of Daphnia magna. Nanotoxicology 2008, 2, 43–48. DOI: https://doi.org/10.1080/17435390801935960.
  • Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M. V. How Toxic Are Gold Nanoparticles? The State-of-the-Art. Nano Res. 2015, 8, 1771–1799. DOI: https://doi.org/10.1007/s12274-014-0697-3.
  • Wang, P.; Wang, X.; Wang, L.; Hou, X.; Liu, W.; Chen, C. Interaction of Gold Nanoparticles with Proteins and Cells. Sci. Technol. Adv. Mater. 2015, 16, 034610.
  • Makama, S.; Piella, J.; Undas, A.; Dimmers, W. J.; Peters, R.; Puntes, V. F.; van den Brink, N. W. Properties of Silver Nanoparticles Influencing Their Uptake in and Toxicity to the Earthworm Lumbricus rubellus following Exposure in Soil. Environ. Pollut 2016, 218, 870–878. DOI: https://doi.org/10.1016/j.envpol.2016.08.016.
  • García-Negrete, C. A.; Blasco, J.; Volland, M.; Rojas, T. C.; Hampel, M.; Lapresta-Fernández, A.; Jiménez de Haro, M. C.; Soto, M.; Fernández, A. Behaviour of Au-Citrate Nanoparticles in Seawater and Accumulation in Bivalves at Environmentally Relevant Concentrations. Environ. Pollut. 2013, 174, 134–141.
  • Zhai, G.; Walters, K. S.; Peate, D. W.; Alvarez, P. J. J.; Schnoor, J. L. Transport of Gold Nanoparticles through Plasmodesmata and Precipitation of Gold Ions in Woody Poplar. Environ. Sci. Technol. Lett. 2014, 1, 146–151.
  • Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metals Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164.
  • Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72.
  • Morgan, A. J.; Kille, P.; Bennett, A.; O'Reilly, M.; Fisher, P.; Charnock, J. M. Pb and Zn Imaging and in Situ Speciation at the Geogenic/Biogenic Interface in Sentinel Earthworms Using Electron Microprobe and Synchrotron Micro-Focus X-Ray Spectroscopy. Environ. Pollut. 2013, 173, 68–74. DOI: https://doi.org/10.1016/j.envpol.2012.10.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.