Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 9
234
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Activated sludge microbial communities and hydrolytic potential in a full-scale SBR system treating landfill leachate

ORCID Icon, , &
Pages 764-772 | Received 16 Jun 2022, Accepted 31 Jul 2022, Published online: 10 Aug 2022

References

  • European Environmental Agency. Diversions of waste from landfill. https://www.eea.europa.eu/ims/diversion-of-waste-from-landfill.
  • United States Environmental Protection Agency. Facts and figures about materials, waste and recycling, national overview facts and figures materials. Lanfilling. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials#Landfilling.
  • Nika, M. C.; Ntaiou, K.; Elytis, K.; Thomaidi, V. S.; Gatidou, G.; Kalantzi, O. I.; Thomaidis, N. S.; Stasinakis, A. S. Wide-Scope Target Analysis of Emerging Contaminants in Landfill Leachates and Risk Assessment Using Risk Quotient Methodology. J. Hazard. Mater. 2020, 394, 122493. DOI: 10.1016/j.jhazmat.2020.122493.[PMC].[32240898.
  • Tałałaj, A.; Bartkowska, I.; Biedka, P. Treatment of Young and Stabilized Landfill Leachate by Integrated Sequencing Batch Reactor (SBR) and Reverse Osmosis (RO) Process. Environ. Nanotechnol. Monit. Manage. 2021, 16. DOI: 10.1016/j.enmm.2021.100502.
  • Bandala, E. R.; Liu, A.; Wijesiri, B.; Zeidman, A. B.; Goonetilleke, A. Emerging Materials and Technologies for Landfill Leachate Treatment: A Critical Review. Environ. Pollut. 2021, 291, 118133. DOI: 10.1016/j.envpol.2021.118133.[PMC].[34534829.
  • Melidis, P. Landfill Leachate Nutrient Removal Using Intermittent Aeration. Environ. Process. 2014, 1, 221–230. DOI: 10.1007/s40710-014-0022-x.
  • Mohammad, A.; Singh, D. N.; Podlasek, A.; Osinski, P.; Koda, E. Leachate Characteristics: Potential Indicators for Monitoring Various Phases of Municipal Solid Waste Decomposition in a Bioreactor Landfill. J. Environ. Manage 2022, 309, 114683. DOI: 10.1016/j.jenvman.2022.114683.
  • de Almeida, R.; Moraes Costa, A.; de Almeida Oroski, F.; Carbonelli Campos, J. Evaluation of Coagulation–Flocculation and Nanofiltration Processes in Landfill Leachate Treatment. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2019, 54, 1091–1098. DOI: 10.1080/10934529.2019.1631093.
  • Polatidou, E.; Azis, K.; Polatides, C.; Remmas, N.; Ntougias, S.; Melidis, P. Evaluation of Electrochemical and O3/UV/H2O2 Methods at Various Combinations during Treatment of Mature Landfill Leachate. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2022, 57, 298–305. DOI: 10.1080/10934529.2022.2060022.
  • Babaei, S.; Sabour, M. R.; Moftakhari Anasori Movahed, S. Combined Landfill Leachate Treatment Methods: An Overview. Environ. Sci. Pollut. Res. Int. 2021, 28, 59594–59607. DOI: 10.1007/s11356-021-16358-0.
  • Remmas, N.; Melidis, P.; Zerva, I.; Kristoffersen, J. B.; Nikolaki, S.; Tsiamis, G.; Ntougias, S. Dominance of Candidate Saccharibacteria in a Membrane Bioreactor Treating Medium Age Landfill Leachate: Effects of Organic Load on Microbial Communities, Hydrolytic Potential and Extracellular Polymeric Substances. Bioresour. Technol. 2017, 238, 48–56. DOI: 10.1016/j.biortech.2017.04.019.
  • Kulikowska, D.; Klimiuk, E. Removal of Organics and Nitrogen from Municipal Landfill Leachate in Two-Stage SBR Reactors. Pol. J. Environ. Stud. 2004, 13, 389–396.
  • Rajasekar, A.; Sekar, R.; Medina-Roldán, E.; Bridge, J.; Moy, C. K. S.; Wilkinson, S. Next-Generation Sequencing Showing Potential Leachate Influence on Bacterial Communities around a Landfill in China. Can. J. Microbiol. 2018, 64, 537–549. DOI: 10.1139/cjm-2017-0543.
  • Díaz, A. I.; Oulego, P.; Laca, A.; González, J. M.; Díaz, M. Metagenomic Analysis of Bacterial Communities from a Nitrification–Denitrification Treatment of Landfill Leachates. Clean – Soil, Air, Water. 2019, 47, 1900156. DOI: 10.1002/clen.201900156.
  • Sheng, B.; Wang, D.; Liu, X.; Yang, G.; Zeng, W.; Yang, Y.; Meng, F. Taxonomic and Functional Variations in the Microbial Community during the Upgrade Process of a Full-Scale Landfill Leachate Treatment Plant – From Conventional to Partial Nitrification-Denitrification. Front. Environ. Sci. Eng. 2020, 14, 93. DOI: 10.1007/s11783-020-1272-7.
  • Clesceri, L.; Greenberg, A.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association (APHA): Washington, DC, 1998.
  • Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254.
  • Zerva, I.; Remmas, N.; Melidis, P.; Ntougias, S. Biotreatment Efficiency, Hydrolytic Potential and Bacterial Community Dynamics in an Immobilized Cell Bioreactor Treating Caper Processing Wastewater under Highly Saline Conditions. Bioresour. Technol. 2021, 325, 124694. DOI: 10.1016/j.biortech.2021.124694.
  • Edgar, R. C. UNOISE2: Improved Error-Correction for Illumina 16S and ITS Amplicon Sequencing. BioRxiv. 2016, 081257. DOI: 10.1101/081257.
  • Wdowczyk, A.; Szymańska-Pulikowska, A. Analysis of the Possibility of Conducting a Comprehensive Assessment of Landfill Leachate Contamination Using Physicochemical Indicators and Toxicity Test. Ecotoxicol. Environ. Saf. 2021, 221, 112434. DOI: 10.1016/j.ecoenv.2021.112434.[PMC].[34153539.
  • Remmas, N.; Melidis, P.; Paschos, G.; Statiris, E.; Ntougias, S. Protozoan Indicators and Extracellular Polymeric Substances Alterations in an Intermittently Aerated Membrane Bioreactor Treating Mature Landfill Leachate. Environ. Technol. 2017, 38, 53–64. DOI: 10.1080/09593330.2016.1190792.
  • Lebiocka, M.; Montusiewicz, A.; Pasieczna-Patkowska, S.; Gułkowski, S. Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. Energies. 2021, 14, 1150. DOI: 10.3390/en14041150.
  • Yong, Z. J.; Bashir, M. J. K.; Ng, C. A.; Sethupathi, S.; Lim, J. A Sequential Treatment of Intermediate Tropical Landfill Leachate Using a Sequencing Batch Reactor (SBR) and Coagulation. J. Environ. Manage. 2018, 205, 244–252. DOI: 10.1016/j.jenvman.2017.09.068.
  • Gomes, A. I.; Foco, M. L. R.; Vieira, E.; Cassidy, J.; Silva, T. F. C. V.; Fonseca, A.; Vilar, V. J. P. Multistage Treatment Technology for Leachate from Mature Urban Landfill: Full Scale Operation Performance and Challenges. Chem. Eng. J. 2019, 376. DOI: 10.1016/j.cej.2018.12.033.
  • Fleck, E.; Gewehr, A. G.; Cybis, L. F. A.; Gehling, G. R.; Juliano, V. B. Evaluation of the Treatability of Municipal Waste Landfill Leachate in a SBR and by Coagulation-Flocculation on a Bench Scale. Braz. J. Chem. Eng. 2016, 33, 851–861. DOI: 10.1590/0104-6632.20160334s20150126.
  • Spagni, A.; Marsili-Libelli, S.; Lavagnolo, M. C. Optimisation of Sanitary Landfill Leachate Treatment in a Sequencing Batch Reactor. Water Sci. Technol. 2008, 58, 337–343. DOI: 10.2166/wst.2008.399.
  • Monclús, H.; Puig, S.; Coma, M.; Bosch, A.; Balaguer, M. D.; Colprim, J. Nitrogen Removal from Landfill Leachate Using the SBR Technology. Environ. Technol. 2009, 30, 283–290. DOI: 10.1080/09593330802622105.
  • Jiang, J.; Ma, L.; Hao, L.; Wu, D.; Wang, K. Comparative Study on Advanced Nitrogen Removal of Landfill Leachate Treated by SBR and SBBR. Water 2021, 13, 3240. DOI: 10.3390/w13223240.
  • Remmas, N.; Ntougias, S.; Chatzopoulou, M.; Melidis, P. Optimization Aspects of the Biological Nitrogen Removal Process in a Full-Scale Twin Sequencing Batch Reactor (SBR) System in Series Treating Landfill Leachate. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2018, 53, 847–853. DOI: 10.1080/10934529.2018.1455375.
  • Morling, S. Nitrogen Removal and Heavy Metals in Leachate Treatment Using SBR Technology. J. Hazard. Mater. 2010, 174, 679–686. DOI: 10.1016/j.jhazmat.2009.09.104.
  • El-Fadel, M.; Hashisho, J. A Comparative Examination of MBR and SBR Performance for the Treatment of High-Strength Landfill Leachate. J. Air Waste Manag. Assoc. 2014, 64, 1073–1084. DOI: 10.1080/10962247.2014.907840.
  • Remmas, N.; Roukouni, C.; Ntougias, S. Bacterial Community Structure and Prevalence of Pusillimonas-like Bacteria in Aged Landfill Leachate. Environ. Sci. Pollut. Res. Int. 2017, 24, 6757–6769. DOI: 10.1007/s11356-017-8416-8.
  • Kumar, R.; Pandit, P.; Kumar, D.; Patel, Z.; Pandya, L.; Kumar, M.; Joshi, C.; Joshi, M. Landfill Microbiome Harbour Plastic Degrading Genes: A Metagenomic Study of Solid Waste Dumping Site of Gujarat, India. Sci. Total Environ. 2021, 779, 146184. DOI: 10.1016/j.scitotenv.2021.146184.[PMC].[33752005.
  • More, T. T.; Yadav, J. S. S.; Yan, S.; Tyagi, R. D.; Surampalli, R. Y. Extracellular Polymeric Substances of Bacteria and Their Potential Environmental Applications. J. Environ. Manage. 2014, 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.
  • Miao, Y.; Wang, Z.; Liao, R.; Shi, P.; Li, A. Assessment of Phenol Effect on Microbial Community Structure and Function in an Anaerobic Denitrifying Process Treating High Concentration Nitrate Wastewater. Chem. Eng. J. 2017, 330, 757–763. DOI: 10.1016/j.cej.2017.08.011.
  • Bhatia, A.; Singh, N. K.; Bhando, T.; Pathania, R.; Kazmi, A. A. Effect of Intermittent Aeration on Microbial Diversity in an Intermittently Aerated IFAS Reactor Treating Municipal Wastewater: A Field Study. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 440–448. DOI: 10.1080/10934529.2016.1271665.
  • Zeng, Y.; Koblížek, M. Phototrophic Gemmatimonadetes: A New “Purple” Branch on the Bacterial Tree of Life. In Modern Topics in the Phototrophic Prokaryotes. Springer, Cham, 2017. pp. 163–192. DOI: 10.1007/978-3-319-46261-5_5.
  • Liang, Z.; Liu, J. Landfill Leachate Treatment with a Novel Process: anaerobic Ammonium Oxidation (Anammox) Combined with Soil Infiltration System. J. Hazard. Mater. 2008, 151, 202–212. DOI: 10.1016/j.jhazmat.2007.05.068.
  • Mieczkowski, D.; Cydzik-Kwiatkowska, A.; Rusanowska, P.; Świątczak, P. Temperature-Induced Changes in Treatment Efficiency and Microbial Structure of Aerobic Granules Treating Landfill Leachate. World J. Microbiol. Biotechnol. 2016, 32, 91. DOI: 10.1007/s11274-016-2046-z.
  • Liu, J.; Zhang, P.; Tian, Z.; Xu, R.; Wu, Y.; Song, Y. Pollutant Removal from Landfill Leachate via Two-Stage Anoxic/Oxic Combined Membrane Bioreactor: Insight in Organic Characteristics and Predictive Function Analysis of Nitrogen-Removal Bacteria. Bioresour. Technol. 2020, 317, 124037. DOI: 10.1016/j.biortech.2020.124037.
  • Zhang, W.; Yu, C.; Wang, X.; Hai, L. Increased Abundance of Nitrogen Transforming Bacteria by Higher C/N Ratio Reduces the Total Losses of N and C in Chicken Manure and Corn Stover Mix Composting. Bioresour. Technol. 2020, 297, 122410. DOI: 10.1016/j.biortech.2019.122410.
  • Yu, Y.; Li, M.; Dai, X.; Meng, F.; Qi, X.; Hou, J.; Ye, M.; Xi, B. In Situ Mature Leachate Treatment with Hydroxylamine Addition in the Aerobic-Anaerobic Recirculation Landfill. Sci. Total Environ 2019, 696, 134084. DOI: 10.1016/j.scitotenv.2019.134084.
  • Podder, A.; Reinhart, D.; Goel, R. Nitrogen Management in Landfill Leachate Using Single-Stage Anammox Process-Illustrating Key Nitrogen Pathways under an Ecogenomics Framework. Bioresour. Technol. 2020, 312, 123578. DOI: 10.1016/j.biortech.2020.123578.
  • Gabarró, J.; Hernández-del Amo, E.; Gich, F.; Ruscalleda, M.; Balaguer, M. D.; Colprim, J. Nitrous Oxide Reduction Genetic Potential from the Microbial Community of an Intermittently Aerated Partial Nitritation SBR Treating Mature Landfill Leachate. Water Res. 2013, 47, 7066–7077. DOI: 10.1016/j.watres.2013.07.057.
  • Sun, F.; Sun, B.; Li, Q.; Deng, X.; Hu, J.; Wu, W. Pilot-Scale Nitrogen Removal from Leachate by Ex Situ Nitrification and in Situ Denitrification in a Landfill Bioreactor. Chemosphere. 2014, 101, 77–85. DOI: 10.1016/j.chemosphere.2013.12.030.
  • Remmas, N.; Melidis, P.; Katsioupi, E.; Ntougias, S. Effects of High Organic Load on amoA and nirS Gene Diversity of an Intermittently Aerated and Fed Membrane Bioreactor Treating Landfill Leachate. Bioresour. Technol. 2016, 220, 557–565. DOI: 10.1016/j.biortech.2016.09.009.
  • Tian, H. L.; Zhao, J. Y.; Zhang, H.-Y.; Chi, C. Q.; Li, B. A.; Wu, X. L. Bacterial Community Shift along with the Changes in Operational Conditions in a Membrane-Aerated Biofilm Reactor. Appl. Microbiol. Biotechnol. 2015, 99, 3279–3290. DOI: 10.1007/s00253-014-6204-7.
  • Xing, W.; Li, J.; Li, P.; Wang, C.; Cao, Y.; Li, D.; Yang, Y.; Zhou, L.; Zuo, J. Effects of Residual Organics in Municipal Wastewater on Hydrogenotrophic Denitrifying Microbial Communities. J Environ Sci. 2018, 65, 262–270. DOI: 10.1016/j.jes.2017.03.001.
  • Imhoff, J. F.; Rahn, T.; Künzel, S.; Neulinger, S. C. Photosynthesis is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins. Front. Microbiol. 2017, 8, 2679. DOI: 10.3389/fmicb.2017.02679.
  • Yamada, T.; Imachi, H.; Ohashi, A.; Harada, H.; Hanada, S.; Kamagata, Y.; Sekiguchi, Y. Bellilinea caldifistulae Gen. nov., sp. nov. and Longilinea arvoryzae Gen. nov., sp. nov., Strictly Anaerobic, Filamentous Bacteria of the Phylum Chloroflexi Isolated from Methanogenic Propionate-Degrading Consortia. Int. J. Syst. Evol. Microbiol. 2007, 57, 2299–2306. DOI: 10.1099/ijs.0.65098-0.
  • Castiglioni, B.; Rizzi, E.; Frosini, A.; Sivonen, K.; Rajaniemi, P.; Rantala, A.; Mugnai, M. A.; Ventura, S.; Wilmotte, A.; Boutte, C.; et al. Development of a Universal Microarray Based on the Ligation Detection Reaction and 16S rRNA Gene Polymorphism to Target Diversity of Cyanobacteria. Appl. Environ. Microbiol. 2004, 70, 7161–7172. DOI: 10.1128/AEM.70.12.7161-7172.2004.
  • Alawi, M.; Lipski, A.; Sanders, T.; Pfeiffer, E. M.; Spieck, E. Cultivation of a Novel Cold-Adapted Nitrite Oxidizing Betaproteobacterium from the Siberian Arctic. ISME J. 2007, 1, 256–264. DOI: 10.1038/ismej.2007.34.
  • Lücker, S.; Schwarz, J.; Gruber-Dorninger, C.; Spieck, E.; Wagner, M.; Daims, H. Nitrotoga-like Bacteria Are Previously Unrecognized Key Nitrite Oxidizers in Full-Scale Wastewater Treatment Plants. Isme J. 2015, 9, 708–720. DOI: 10.1038/ismej.2014.158.
  • Zheng, M.; Li, S.; Ni, G.; Xia, J.; Hu, S.; Yuan, Z.; Liu, Y.; Huang, X. Critical Factors Facilitating Candidatus Nitrotoga to Be Prevalent Nitrite-Oxidizing Bacteria in Activated Sludge. Environ. Sci. Technol. 2020, 54, 15414–15423. DOI: 10.1021/acs.est.0c04192.
  • Sun, H.; Jiang, T.; Zhang, F.; Zhang, P.; Zhang, H.; Yang, H.; Lu, J.; Ge, S.; Ma, B.; Ding, J.; Zhang, W. Understanding the Effect of Free Ammonia on Microbial Nitrification Mechanisms in Suspended Activated Sludge Bioreactors. Environ. Res. 2021, 200, 111737. DOI: 10.1016/j.envres.2021.111737.
  • Remmas, N.; Melidis, P.; Voltsi, C.; Athanasiou, D.; Ntougias, S. Novel Hydrolytic Extremely Halotolerant Alkaliphiles from Mature Landfill Leachate with Key Involvement in Maturation Process. J. Environ. Sci. Health. A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 64–73. DOI: 10.1080/10934529.2016.1229931.
  • Ntougias, S. Phylogenetic Identification and Enzyme Activities of Indigenous Bacteria from a Landfill Stabilization Pond. Environ. Process. 2016, 3, 341–352. DOI: 10.1007/s40710-016-0150-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.