Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 9
239
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Potential use of Chlorella vulgaris KCBAL01 from a freshwater stream receiving treated textile effluent in hexavalent chromium [Cr(VI)] removal in extremely acidic conditions

, ORCID Icon, &
Pages 780-788 | Received 28 Apr 2022, Accepted 05 Aug 2022, Published online: 26 Aug 2022

References

  • Ma, Y.; Chen, Y.; Liu, J.; Han, Y.; Ma, S.; Chen, X. Ratiometric Fluorescent Detection of Chromium(VI) in Real Samples Based on Dual Emissive Carbon Dots. Talanta. 2018, 185, 249–257. DOI: 10.1016/j.talanta.2018.03.081.
  • Kim, H. S.; Kim, Y. J.; Seo, Y. R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. DOI: 10.15430/JCP.2015.20.4.232.
  • Zeinali, T.; Salmani, F.; Naseri, K. Dietary Intake of Cadmium, Chromium, Copper, Nickel, and Lead through the Consumption of Meat, Liver, and Kidney and Assessment of Human Health Risk in Birjand, Southeast of Iran. Biol. Trace Elem. Res. 2019, 191, 338–347. DOI: 10.1007/s12011-019-1637-6.
  • Kotaś, J.; Stasicka, Z. Chromium Occurrence in the Environment and Methods of Its Speciation. Environ. Pollut. 2000, 107, 263–283. DOI: 10.1016/S0269-7491(99)00168-2.
  • Kim, C.; Lee, C. R.; Song, Y. E.; Heo, J.; Choi, S. M.; Lim, D.-H.; Cho, J.; Park, C.; Jang, M.; Kim, J. R. Hexavalent Chromium as a Cathodic Electron Acceptor in a Bipolar Membrane Microbial Fuel Cell with the Simultaneous Treatment of Electroplating Wastewater. Chem. Eng. J 2017, 328, 703–707. DOI: 10.1016/j.cej.2017.07.077.
  • Hashem, M. A.; Islam, A.; Mohsin, S.; Nur-A-Tomal, M. S. Green Environment Suffers by Discharging of High-Chromium-Containing Wastewater from the Tanneries at Hazaribagh, Bangladesh. Sustain. Water Resour. Manag. 2015, 1, 343–347. DOI: 10.1007/s40899-015-0033-4.
  • Genawi, N. M.; Ibrahim, M. H.; El-Naas, M. H.; Alshaik, A. E. Chromium Removal from Tannery Wastewater by Electrocoagulation: Optimization and Sludge Characterization. Water 2020, 12, 1374. DOI: 10.3390/w12051374.
  • Cervantes, C.; Campos-García, J.; Devars, S.; Gutiérrez-Corona, F.; Loza-Tavera, H.; Torres-Guzmán, J. C.; Moreno-Sánchez, R. Interactions of Chromium with Microorganisms and Plants. FEMS Microbiol. Rev. 2001, 25, 335–347. DOI: 10.1111/j.1574-6976.2001.tb00581.x.
  • Oral, R.; Meriç, S.; De Nicola, E.; Petruzzelli, D.; Della Rocca, C.; Pagano, G. Multi-Species Toxicity Evaluation of a Chromium-Based Leather Tannery Wastewater. Desalination 2007, 211, 48–57. DOI: 10.1016/j.desal.2006.02.084.
  • Ouyang, H.; Kong, X.; He, W.; Qin, N.; He, Q.; Wang, Y.; Wang, R.; Xu, F. Effects of Five Heavy Metals at Sub-Lethal Concentrations on the Growth and Photosynthesis of Chlorella vulgaris. Chin. Sci. Bull. 2012, 57, 3363–3370. DOI: 10.1007/s11434-012-5366-x.
  • Shanker, A. K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium Toxicity in Plants. Environ. Int. 2005, 31, 739–753. DOI: 10.1016/j.envint.2005.02.003.
  • Wong, P. K.; Chang, L. Effects of Copper, Chromium and Nickel on Growth, Photosynthesis and Chlorophyll a Synthesis of Chlorella pyrenoidosa 251. Environ. Pollut. 1991, 72, 127–139. DOI: 10.1016/0269-7491(91)90063-3.
  • Bano, F.; Zutshi, S.; Fatma, T. Chromium (VI) Induced Oxidative Stress in Hapalosiphon fontinalis. World J. Microbiol. Biotechnol. 2012, 28, 2505–2511. DOI: 10.1007/s11274-012-1058-6.
  • Yewalkar, S. N.; Dhumal, K. N.; Sainis, J. K. Chromium(VI)-Reducing Chlorella spp. Isolated from Disposal Sites of Paper-Pulp and Electroplating Industry. J. Appl. Phycol. 2007, 19, 459–465. DOI: 10.1007/s10811-007-9153-z.
  • Toranzo, R.; Ferraro, G.; Beligni, M. V.; Perez, G. L.; Castiglioni, D.; Pasquevich, D.; Bagnato, C. Natural and Acquired Mechanisms of Tolerance to Chromium in a Scenedesmus dimorphus Strain. Algal. Res. 2020, 52, 102100. DOI: 10.1016/j.algal.2020.102100.
  • Munagamage, T.; Rathnayake, I. V. N.; Pathiratne, A.; Megharaj, M. Comparison of Sensitivity of Tropical Freshwater Microalgae to Environmentally Relevant Concentrations of Cadmium and Hexavalent Chromium in Three Types of Growth Media. Bull. Environ. Contam. Toxicol. 2020, 105, 397–404. DOI: 10.1007/s00128-020-02950-6.
  • Rai, U. N.; Singh, N. K.; Upadhyay, A. K.; Verma, S. Chromate Tolerance and Accumulation in Chlorella vulgaris L.: Role of Antioxidant Enzymes and Biochemical Changes in Detoxification of Metals. Bioresour. Technol. 2013, 136, 604–609. DOI: 10.1016/j.biortech.2013.03.043.
  • Yen, H.-W.; Chen, P.-W.; Hsu, C.-Y.; Lee, L. The Use of Autotrophic Chlorella vulgaris in Chromium (VI) Reduction under Different Reduction Conditions. J. Taiwan Inst. Chem. Eng. 2017, 74, 1–6. DOI: 10.1016/j.jtice.2016.08.017.
  • Majhi, P.; Samantaray, S. M. Bio-Reduction of Hexavalent Chromium by an Indigenous Green Alga and Its Impact on the Germination of Rice Seed in Chromium Enriched Environment. Bioremediation J. 2021, 25, 128–147. DOI: 10.1080/10889868.2020.1867048.
  • Husien, S.; Labena, A.; El-Belely, E. F.; Mahmoud, H. M.; Hamouda, A. S. Absorption of Hexavalent Chromium by Green Micro Algae Chlorella sorokiniana: Live Planktonic Cells. Water Pract. Technol. 2019, 14, 515–529. DOI: 10.2166/wpt.2019.034.
  • Das, C.; Naseera, K.; Ram, A.; Meena, R. M.; Ramaiah, N. Bioremediation of Tannery Wastewater by a Salt-Tolerant Strain of Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 235–243. DOI: 10.1007/s10811-016-0910-8.
  • Saranya, D.; Shanthakumar, S. Green Microalgae for Combined Sewage and Tannery Effluent Treatment: Performance and Lipid Accumulation Potential. J. Environ. Manage. 2019, 241, 167–178. DOI: 10.1016/j.jenvman.2019.04.031.
  • Deng, L.; Wang, H.; Deng, N. Photoreduction of Chromium(VI) in the Presence of Algae, Chlorella vulgaris. J. Hazard Mater. 2006, 138, 288–292. DOI: 10.1016/j.jhazmat.2006.04.062.
  • Clément-Larosière, B.; Lopes, F.; Gonçalves, A.; Taidi, B.; Benedetti, M.; Minier, M.; Pareau, D. Carbon Dioxide Biofixation by Chlorella vulgaris at Different CO 2 Concentrations and Light Intensities. Eng. Life Sci. 2014, 14, 509–519. DOI: 10.1002/elsc.201200212.
  • Shen, Q.-H.; Zhi, T.-T.; Cheng, L.-H.; Xu, X.-H.; Chen, H.-L. Hexavalent Chromium Detoxification by Nonliving Chlorella vulgaris Cultivated under Tuned Conditions. Chem. Eng. J. 2013, 228, 993–1002. DOI:10.1016/j.cej.2013.05.074.
  • Aksu, Z.; Açikel, Ü.; Kutsal, T. Investigation of Simultaneous Biosorption of Copper(II) and Chromium(VI) on Dried Chlorella Vulgaris from Binary Metal Mixtures: Application of Multicomponent Adsorption Isotherms. Sep. Sci. Technol., 1999, 34, 501–524. https://doi.org/10.1081/SS-100100663.
  • Singh, S. K.; Bansal, A.; Jha, M. K.; Dey, A. An Integrated Approach to Remove Cr(VI) Using Immobilized Chlorella Minutissima Grown in Nutrient Rich Sewage Wastewater. Bioresour. Technol., 2012, 104, 257–265. https://doi.org/10.1016/j.biortech.2011.11.044.
  • Athira, K.; Sathish, A.; Nithya, K.; Guhananthan, A. Corn Cob Immobilised Chlorella Sorokiniana for the Sequestration of Chromium Ions from Aqueous Solution. Mater. Today Proc., 2020, S2214785320319313. https://doi.org/10.1016/j.matpr.2020.03.151.
  • Xie, Y.; Li, H.; Wang, X.; Ng, I.-S.; Lu, Y.; Jing, K. Kinetic Simulating of Cr(VI) Removal by the Waste Chlorella vulgaris Biomass. J. Taiwan Inst. Chem. Eng. 2014, 45, 1773–1782. DOI: 10.1016/j.jtice.2014.02.016.
  • Han, X.; Wong, Y. S.; Wong, M. H.; Tam, N. F. Y. Biosorption and Bioreduction of Cr(VI) by a Microalgal Isolate, Chlorella miniata. J. Hazard Mater. 2007, 146, 65–72. DOI: 10.1016/j.jhazmat.2006.11.053.
  • Senevirathne, D.; Rathnayake, I. V. N. Single Metal and Mixture Toxicity of Cd2+ and Zn2+ to a Microalga (Chlorella spp.) Isolated from a Water Body Receiving Industrial Effluent. In: Proceedings of the 12th International Research Conference; Kothalawala Defense University: Sri Lanka, Sept. 2019; pp 210.
  • Ferris, M. J.; Sheehan, K. B.; Kühl, M.; Cooksey, K.; Wigglesworth-Cooksey, B.; Harvey, R.; Henson, J. M. Algal Species and Light Microenvironment in a Low-PH, Geothermal Microbial Mat Community. Appl. Environ. Microbiol. 2005, 71, 7164–7171. DOI: 10.1128/AEM.71.11.7164-7171.2005.
  • Yun, Y.-S.; Park, J. M. Attenuation of Monochromatic and Polychromatic Lights in Chlorella vulgaris Suspensions. Appl. Microbiol. Biotechnol. 2001, 55, 765–770. DOI: 10.1007/s002530100639.
  • Megharaj, M.; Avudainayagam, S.; Naidu, R. Toxicity of Hexavalent Chromium and Its Reduction by Bacteria Isolated from Soil Contaminated with Tannery Waste. Curr. Microbiol. 2003, 47, 51–54. DOI: 10.1007/s00284-002-3889-0.
  • Krishna, D.; Sree, R. P. Artificial Neural Network and Response Surface Methodology Approach for Modeling and Optimization of Chromium (VI) Adsorption from Waste Water Using Ragi Husk Powder. Indian Chem. Eng. 2013, 55, 200–222. DOI: 10.1080/00194506.2013.829257.
  • Kabir, M. M.; Fakhruddin, A. N. M.; Chowdhury, M. A. Z.; Pramanik, M. K.; Fardous, Z. Isolation and Characterization of Chromium(VI)-Reducing Bacteria from Tannery Effluents and Solid Wastes. World J. Microbiol. Biotechnol. 2018, 34, 126. DOI: 10.1007/s11274-018-2510-z..
  • Pradhan, S. K.; Singh, N. R.; Das, S.; Thatoi, H. Molecular Identification and Phylogenetic Analysis of Chromium-Resistant Bacteria Isolated from Chromite Mine Area Soil, Sukinda, India Using 16S RRNA Sequencing. Soil Sediment Contam. Int. J. 2020, 29, 805–822. DOI: 10.1080/15320383.2020.1771272.
  • Gokhale, S. V.; Jyoti, K. K.; Lele, S. S. Kinetic and Equilibrium Modeling of Chromium (VI) Biosorption on Fresh and Spent Spirulina Platensis/Chlorella vulgaris Biomass. Bioresour. Technol. 2008, 99, 3600–3608. DOI: 10.1016/j.biortech.2007.07.039.
  • Lu, M.-M.; Gao, F.; Li, C.; Yang, H.-L. Response of Microalgae Chlorella vulgaris to Cr Stress and Continuous Cr Removal in a Membrane Photobioreactor. Chemosphere. 2021, 262, 128422. DOI: 10.1016/j.chemosphere.2020.128422.
  • Hörcsik, Z. T.; Kovács, L.; Láposi, R.; Mészáros, I.; Lakatos, G.; Garab, G. Effect of Chromium on Photosystem 2 in the Unicellular Green Alga, Chlorella pyrenoidosa. Photosynt. 2007, 45, 65–69. DOI: 10.1007/s11099-007-0010-8.
  • Laxmi, V.; Kaushik, G. Toxicity of Hexavalent Chromium in Environment, Health Threats, and Its Bioremediation and Detoxification from Tannery Wastewater for Environmental Safety. In Bioremediation of Industrial Waste for Environmental Safety; Saxena, G., Bharagava, R. N., Eds.; Springer Singapore: Singapore, 2020; pp 223–243. DOI: 10.1007/978-981-13-1891-7_11.
  • Zou, H.; Huang, J.-C.; Zhou, C.; He, S.; Zhou, W. Mutual Effects of Selenium and Chromium on Their Removal by Chlorella vulgaris and Associated Toxicity. Sci. Total. Environ. 2020, 724, 138219. DOI: 10.1016/j.scitotenv.2020.138219.
  • Qian, H.; Sun, Z.; Sun, L.; Jiang, Y.; Wei, Y.; Xie, J.; Fu, Z. Phosphorus Availability Changes Chromium Toxicity in the Freshwater Alga Chlorella vulgaris. Chemosphere. 2013, 93, 885–891. DOI: 10.1016/j.chemosphere.2013.05.035.
  • Sakarika, M.; Kornaros, M. Effect of PH on Growth and Lipid Accumulation Kinetics of the Microalga Chlorella vulgaris Grown Heterotrophically under Sulfur Limitation. Bioresour. Technol. 2016, 219, 694–701. DOI: 10.1016/j.biortech.2016.08.033.
  • Ma, M.; Yuan, D.; He, Y.; Park, M.; Gong, Y.; Hu, Q. Effective Control of Poterioochromonas Malhamensis in Pilot-Scale Culture of Chlorella sorokiniana GT-1 by Maintaining CO2-Mediated Low Culture PH. Algal. Res. 2017, 26, 436–444. DOI: 10.1016/j.algal.2017.06.023.
  • Suthar, S.; Verma, R. Production of Chlorella vulgaris under Varying Nutrient and Abiotic Conditions: A Potential Microalga for Bioenergy Feedstock. Process Saf. Environ. Prot. 2017, 113, 141–148. DOI: 10.1016/j.psep.2017.09.018.
  • Yang, L.; Chen, J. P. Biosorption of Hexavalent Chromium onto Raw and Chemically Modified Sargassum sp. Bioresour. Technol. 2008, 99, 297–307. DOI: 10.1016/j.biortech.2006.12.021.
  • Pradhan, D.; Sukla, L. B.; Mishra, B. B.; Devi, N. Biosorption for Removal of Hexavalent Chromium Using Microalgae Scenedesmus sp. J. Clean. Prod. 2019, 209, 617–629. DOI: 10.1016/j.jclepro.2018.10.288.
  • Arıca, M. Y.; Tüzün, İ.; Yalçın, E.; İnce, Ö.; Bayramoğlu, G. Utilisation of Native, Heat and Acid-Treated Microalgae Chlamydomonas reinhardtii Preparations for Biosorption of Cr(VI) Ions. Process Biochem. 2005, 40, 2351–2358. DOI: 10.1016/j.procbio.2004.09.008.
  • Gupta, V. K.; Rastogi, A. Biosorption of Hexavalent Chromium by Raw and Acid-Treated Green Alga Oedogonium hatei from Aqueous Solutions. J. Hazard Mater. 2009, 163, 396–402. DOI: 10.1016/j.jhazmat.2008.06.104.
  • Dönmez, G.; Aksu, Z. Removal of Chromium(VI) from Saline Wastewaters by Dunaliella species. Process Biochem. 2002, 38, 751–762. DOI: 10.1016/S0032-9592(02)00204-2.
  • Sánchez-Fortún, S.; López-Rodas, V.; Navarro, M.; Marvá, F.; D'ors, A.; Rouco, M.; Haigh-Florez, D.; Costas, E. Toxicity and Adaptation of Dictyosphaerium chlorelloides to Extreme Chromium Contamination. Environ. Toxicol. Chem. 2009, 28, 1901–1905. DOI: 10.1897/08-489.1.
  • Rachlin, J. W.; Grosso, A. The Effects of PH on the Growth of Chlorella vulgaris and Its Interactions with Cadmium Toxicity. Arch. Environ. Contam. Toxicol. 1991, 20, 505–508. DOI: 10.1007/BF01065839.
  • Rai, U.; Deshar, G.; Rai, B.; Bhattarai, K.; Dhakal, R.; Rai, S. Isolation and Culture Condition Optimization of Chlorella vulgaris. Nepal J. Sci. Technol. 2014, 14, 43–48. DOI: 10.3126/njst.v14i2.10414.
  • Zheng, H.; Wu, X.; Zou, G.; Zhou, T.; Liu, Y.; Ruan, R. Cultivation of Chlorella vulgaris in Manure-Free Piggery Wastewater with High-Strength Ammonium for Nutrients Removal and Biomass Production: Effect of Ammonium Concentration, Carbon/Nitrogen Ratio and PH. Bioresour. Technol. 2019, 273, 203–211. DOI: 10.1016/j.biortech.2018.11.019.
  • Chen, Z.; Song, S.; Wen, Y. Reduction of Cr (VI) into Cr (III) by Organelles of Chlorella vulgaris in Aqueous Solution: An Organelle-Level Attempt. Sci. Total Environ. 2016, 572, 361–368. DOI: 10.1016/j.scitotenv.2016.07.217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.