Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 10
217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Cyto-genotoxicity evaluation of pyroligneous acid using Allium cepa assay

, , , & ORCID Icon
Pages 852-857 | Received 06 Dec 2021, Accepted 24 Aug 2022, Published online: 10 Sep 2022

References

  • Mohan, D.; Pittman, C. U.; Jr.; Steele, P. H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. DOI: 10.1021/ef0502397.
  • Mathew, S.; Zakaria, Z. A. Pyroligneous Acid-the Smoky Acidic Liquid from Plant Biomass. Appl. Microbiol. Biotechnol. 2015, 99, 611–622.
  • Tiilikkala, K.; Fagernäs, L.; Tiilikkala, J. History and Use of Wood Pyrolysis Liquids as Biocide and Plant Protection Product. Open Agric. J. 2010, 4, 111–118. DOI: 10.2174/1874331501004010111.
  • Rahmat, B.; Pangesti, D.; Natawijaya, D.; Sufyadi, D. Generation of Wood-Waste Vinegar and Its Effectiveness as a Plant Growth Regulator and Pest Insect Repellent. BioResources 2014, 9, 6350–6360. DOI: 10.15376/biores.9.4.6350-6360.
  • Yang, J. F.; Yang, C. H.; Liang, M. T.; Gao, Z. J.; Wu, Y. W.; Chuang, L. Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi Chinensis. Molecules 2016, 21, 1150. DOI: 10.3390/molecules21091150.
  • Li, Z.; Zhang, Z.; Wu, L.; Zhang, H.; Wang, Z. Characterization of Five Kinds of Wood Vinegar Obtained from Agricultural and Forestry Wastes and Identification of Major Antioxidants in Wood Vinegar. Chem. Res. Chin. Univ. 2019, 35, 12–20. DOI: 10.1007/s40242-019-8207-5.
  • de Lima, G. G.; Mendes, C.; de Marchi, G.; Vicari, T.; Cestari, M. M.; Gomes, M. F.; Ramsdorf, W. A.; Magalhães, W. L. E.; Hansel, F. A.; Leme, D. M. The Evaluation of the Potential Ecotoxicity of Pyroligneous Acid Obtained from Fast Pyrolysis. Ecotoxicol. Environ. Saf. 2019, 180, 616–623.
  • Saravanakumar, K.; Sivasantosh, S.; Sathiyaseelan, A.; Sankaranarayanan, A.; Naveen, K. V.; Zhang, X.; Jamla, M.; Vijayasarathy, S.; Priya, V. V.; MubarakAli, D.; Wang, M. H. Impact of Benzo [a] Pyrene with Other Pollutants Induce the Molecular Alternation in the Biological System: Existence, Detection, and Remediation Methods. Environ. Pollut. 2022, 304, 119207. DOI: 10.1016/j.envpol.2022.119207.
  • Landis, W.; Sofield, R.; Yu, M. H.; Landis, W. G. Introduction to Environmental Toxicology: Impacts of Chemicals upon Ecological Systems; CRC Press: Boca Raton, 2003.
  • Kumari, M.; Mukherjee, A.; Chandrasekaran, N. Genotoxicity of Silver Nanoparticles in Allium Cepa. Sci. Total Environ. 2009, 407, 5243–5246.
  • Yahaya, T.; Okpuzor, J.; Esther, O. O. Investigation of Cytotoxicity and Mutagenicity of Cement Dust Using Allium Cepa Test. Res. J. Mutagen 2011, 201, 1.
  • Ahmed, B.; Dwivedi, S.; Abdin, M. Z.; Azam, A.; Al-Shaeri, M.; Khan, M. S.; Saquib, Q.; Al-Khedhairy, A. A.; Musarrat, J. Mitochondrial and Chromosomal Damage Induced by Oxidative Stress in Zn 2+ Ions, ZnO-Bulk and ZnO-NPs Treated Allium Cepa Roots. Sci. Rep. 2017, 7, 40685.
  • Sivaram, A. K.; Logeshwaran, P.; Lockington, R.; Naidu, R.; Megharaj, M. Impact of Plant Photosystems in the Remediation of Benzo [a] Pyrene and Pyrene Spiked Soils. Chemosphere 2018, 193, 625–634. DOI: 10.1016/j.chemosphere.2017.11.081.
  • Scherer, M. D.; Sposito, J. C. V.; Falco, W. F.; Grisolia, A. B.; Andrade, L. H. C.; Lima, S. M.; Machado, G.; Nascimento, V. A.; Gonçalves, D. A.; Wender, H.; et al. Cytotoxic and Genotoxic Effects of Silver Nanoparticles on Meristematic Cells of Allium Cepa Roots: A Close Analysis of Particle Size Dependence. Sci. Total Environ. 2019, 660, 459–467.
  • Leme, D. M.; Marin-Morales, M. A. Allium Cepa Test in Environmental Monitoring: A Review on Its Application. Mutat. Res. Rev. Mutat. Res. 2009, 682, 71–81. DOI: 10.1016/j.mrrev.2009.06.002.
  • Olorunfemi, D.; Ogieseri, U.; Akinboro, A. Genotoxicity Screening of Industrial Effluents Using Onion Bulbs (Allium Cepa L.). J. Appl. Sci. Environ. Manage. 2011, 15, 1.
  • Sivaram, A. K.; Logeshwaran, P.; Subashchandrabose, S. R.; Lockington, R.; Naidu, R.; Megharaj, M. Comparison of Plants with C3 and C4 Carbon Fixation Pathways for Remediation of Polycyclic Aromatic Hydrocarbon Contaminated Soils. Sci. Rep. 2018, 8, 10. DOI: 10.1038/s41598-018-20317-0.
  • Panneerselvan, L.; Sivaram, A. K.; Mallavarapu, M.; Naidu, R. Evaluation of Cyto-and Genotoxic Effects of Class B Firefighting Foam Products: Tridol-S 3% AFFF and Tridol-S 6% AFFF to Allium Cepa. Environ. Technol. Innov. 2016, 6, 185–194. DOI: 10.1016/j.eti.2016.10.003.
  • Sivaram, A. K.; Logeshwaran, P.; Surapaneni, A.; Shah, K.; Crosbie, N.; Rogers, Z.; Lee, E.; Venkatraman, K.; Kannan, K.; Naidu, R.; Megharaj, M. Evaluation of Cyto‐Genotoxicity of Perfluorooctane Sulfonate (PFOS) to Allium Cepa. Environ. Toxicol. Chem. 2021, 40, 792–798.
  • Pfosser, M.; Amon, A.; Lelley, T.; Heberle-Bors, E. Evaluation of Sensitivity of Flow Cytometry in Detecting Aneuploidy in Wheat Using Disornic and Ditelosornic Wheatrye Addition Lines. Cytometry 1995, 21, 387–393. DOI: 10.1002/cyto.990210412.
  • Yıldız, M.; Ciğerci, İH.; Konuk, M.; Fidan, A. F.; Terzi, H. Determination of Genotoxic Effects of Copper Sulphate and Cobalt Chloride in Allium Cepa Root Cells by Chromosome Aberration and Comet Assays. Chemosphere 2009, 75, 934–938. DOI: 10.1016/j.chemosphere.2009.01.023.
  • Lent, E. M.; Crouse, L. C.; Quinn, M. J.; Jr.; Wallace, S. M. Assessment of the in Vivo Genotoxicity of Isomers of Dinitrotoluene Using the Alkaline Comet and Peripheral Blood Micronucleus Assays. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2012, 742, 54–60. DOI: 10.1016/j.mrgentox.2011.11.013.
  • Abinandan, S.; Subashchandrabose, S. R.; Panneerselvan, L.; Venkateswarlu, K.; Megharaj, M. Potential of Acid-Tolerant Microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in Heavy Metal Removal and Biodiesel Production at Acidic pH. Bioresour. Technol. 2019, 278, 9–16.
  • Grewal, A.; Abbey, L.; Gunupuru, L. R. Production, Prospects and Potential Application of Pyroligneous Acid in Agriculture. J. Anal. Appl. Pyrolysis 2018, 135, 152–159. DOI: 10.1016/j.jaap.2018.09.008.
  • Pimenta, A. S.; Fasciotti, M.; Monteiro, T. V.; Lima, K. M. Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules 2018, 23, 426. DOI: 10.3390/molecules23020426.
  • Theapparat, Y.; Ponglimanont, C.; Chandumpai, A.; Laemsak, N. In Vitro Antioxidant Evaluation of Wood Vinegars from Carbonization of Wood and Bamboo. Chiang Mai J. Sci. 2018, 45, 868–880.
  • Ferri, D.; Bürgi, T.; Baiker, A. Molecular Interaction between Cinchonidine and Acetic Acid Studied by NMR, FTIR and ab Initio Methods. J. Chem. Soc., Perkin Trans. 2 1999, 2, 1305–1312. DOI: 10.1039/a902514f.
  • da Silva Porto, F. G.; Campos, Â. D.; Garcia, I. T. S. Distilled Pyroligneous Liquor Obtained from Eucalyptus Grandis and Chitosan: Physicochemical Properties of the Solution and Films. Environ. Sci. Pollut. Res. Int. 2019, 26, 672–683.
  • Adfa, M.; Romayasa, A.; Kusnanda, A. J.; Avidlyandi, A.; Yudha, S. S.; Banon, C.; Gustian, I. Chemical Components, anti-Termite and Antifungal Activities of Cinnamomum Parthenoxylon Wood Vinegar. J. Korean Wood Sci. Technol. 2020, 48, 107–116. DOI: 10.5658/WOOD.2020.48.1.107.
  • Antosiewicz, D. Analysis of the Cell Cycle in the Root Meristem of Allium Cepa under the Influence of Ledakrin. Folia Histochem. Cytobiol. 1990, 28, 79–95.
  • Santos, C. L.; Pourrut, B.; Oliveira, J. M. P. The Use of Comet Assay in Plant Toxicology: Recent Advances. Front. Genet. 2015, 6, 216.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.