Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 57, 2022 - Issue 12
218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Statistical modeling of hormesis quantities in inverted U-shaped dose-response relationships by reparameterization of a bilogistic model

, , , &
Pages 1003-1023 | Received 01 Jul 2022, Accepted 07 Oct 2022, Published online: 26 Nov 2022

Reference

  • Calabrese, E. J.; Baldwin, L. A. The Marginalization of Hormesis. Toxicol. Pathol. 1999, 27, 187–194. DOI: 10.1177/019262339902700206.
  • Calabrese, E. J.; Baldwin, L. A. The Marginalization of Hormesis. Human Exp. Toxicol. 2000, 19, 32–40. DOI: 10.1191/096032700678815594.
  • Calabrese, E. J.; Baldwin, L. A. Toxicology Rethinks Its Central Belief. Nature 2003, 421, 691–692. DOI: 10.1038/421691a.
  • Calabrese, E.; J. Hormesis: From Marginalization to Mainstream; a Case for Hormesis as the Default Dose-Response Model in Risk Assessment. Toxicol. Appl. Pharmacol. 2004, 197, 125–136. DOI: 10.1016/j.taap.2004.02.007.
  • Calabrese, E. JHormesis. Once Marginalized, Evidence Now Supports Hormesis as the Dose Fundamental Dose Response. In Hormesis: A Revolution in Biology, Toxicology and Medicine; Mattson, M. P., Calabrese, E. J. Eds.; Springer; New York NY, 2010; pp. 15–56.
  • Shi, J.; Huber, M.; Wang, T.; Dali, W.; Lin, Z.; Chun-Sheng, Y. Progress in the Studies on Hormesis of Low-Dose Pollutants. Environ. Dis. 2016, 1, 58–64. DOI: 10.4103/2468-5690.185296.
  • Nweke, C. O.; Ogbonna, C. J. Statistical Models for Biphasic Dose-Response Relationship (Hormesis) in Toxicological Studies. EEC 2017, 12, 39–55. DOI: 10.5132/eec.2017.01.06.
  • Schabenberger, O.; Tharp, B. E.; Kells, J. J.; Penner, D. Statistical Test for Hormesis and Effective Dosages in Herbicide Dose–Response. Agronomy J. 1999, 91, 713–721. DOI: 10.2134/agronj1999.914713x.
  • Cedergreen, N.; Ritz, C.; Streibig, J. C. Improved Empirical Model Describing Hormesis. Environ. Toxicol. Chem. 2005, 24, 3166–3172. DOI: 10.1897/05-014R.1.
  • Belz, R. G.; Piepho, H.-P. Modeling Effective Dosages in Hormetic Dose-Response Studies. PLoS One 2012, 7, e33432–10. DOI: 10.1371/journal.pone.0033432.
  • Nweke, C. O.; Nwangwu, O. R.; Ogbonna, C. J.; Okechi, R. N. Statistical Modeling of Effective Doses in Hormetic Dose-Response Relationships by Reparameterization of a Bilogistic Model for Inverted U-Shaped Curves. African J. Biotechnol. 2021, 20, 451–464. DOI: 10.5897/AJB2021.17359.
  • Belz, R. G.; Piepho, H.-P. Statistical Modeling of the Hormetic Dose Zone and the Toxic Potency Completes the Quantitative Description of Hormetic Dose Responses. Environ. Toxicol. Chem. 2015, 34, 1169–1177. DOI: 10.1002/etc.2857.
  • Beckon, W. N.; Parkins, C.; Maximovich, A.; Beckon, A. V. A General Approach to Modeling Biphasic Relationships. Environ. Sci. Technol. 2008, 42, 1308–1314. DOI: 10.1021/es071148m.
  • Zhu, X.-W.; Liu, S.-S.; Qin, L.-T.; Chen, F.; Liu, H.-L. Modeling Non-Monotonic Dose- Response Relationships: Model Evaluation and Hormetic Quantities Exploration. Ecotoxicol. Environ. Safety 2013, 89, 130–136. DOI: 10.1016/j.ecoenv.2012.11.022.
  • Belz, R. G.; Piepho, H.-P. Variability of Hormetic Dose Responses of the Antiauxin PCIB on Lactuca sativa in a Plant Bioassay. Weed Res. 2013, 53, 418–428. DOI: 10.1111/wre.12038.
  • Belz, R. G.; Piepho, H.-P. Interspecies Variability of Plant Hormesis by the Antiauxin PCIB in a Laboratory Bioassay. J. Plant Growth Regul. 2014, 33, 499–512. DOI: 10.1007/s00344-013-9400-2.
  • Belz, R. G.; Cedergreen, N. Parthenin Hormesis in Plants Depends on Growth Conditions. Environ. Exp. Bot. 2010, 69, 293–301. DOI: 10.1016/j.envexpbot.2010.04.010.
  • Deng, Z.; Lin, Z.; Zou, X.; Yao, Z.; Tian, D.; Wang, D.; Yin, D. Models of Hormesis and Its Toxicity Mechanism Based on Quorum Sensing. A Case Study on the Toxicity of Sulfonamides to Photobacterium phosphoreum. Environ. Sci. Technol. 2012, 46, 7746–7754. DOI: http://dx.doi.org/10.1021/es203490f.
  • Lushcha, V. I. Dissection of the Hormetic Curve: analysis of Components and Mechanisms. Dose Response 2014, 12, 466–479. DOI: 10.2203/dose-response.13-051.Lushchak.
  • Ge, H.-L.; Liu, S.-S.; Zhu, X.-W.; Liu, H.-L.; Wang, L.-J. Predicting Hormetic Effects of Ionic Liquid Mixtures on Luciferase Activity Using the Concentration Addition Model. Environ. Sci. Technol. 2011, 45, 1623–1629. DOI: http://dx.doi.org/10.1021/es1018948.
  • Nweke, C. O.; Ahumibe, N. C.; Orji, J. C. Toxicity of Binary Mixtures of Formulated Glyphosate and Phenols to Rhizobium Species Dehydrogenase Activity. J. Microbiol. Res. 2014, 4, :161–169.
  • Nweke, C. O.; Nwachukwu, IN.; Opurum, C. C.; Aguh, M. N. Toxicities of Senary and Septenary Mixtures of Five Metals and Two Phenols to Pseudomonas fluorescens. Int. Res. J. Biol. Sci. 2020, 9, 19–31.
  • Nweke, C. O.; Umeh, S. I.; Ohale, V. K. Toxicity of Four Metals and Their Mixtures to Pseudomona Fluorescens: An Assessment Using Fixed Ratio Ray Design. EEC 2018, 13, 1–14. DOI: http://dx.doi.org/10.5132/eec.2018.01.01.
  • Piñeiro, G.; Perelman, S.; Guerschman, J. P.; Paruelo, J. M. How to Evaluate Models: Observed vs. predicted or Predicted vs. observed? Ecol. Modell. 2008, 216, 316–322. DOI: 10.1016/j.ecolmodel.2008.05.006.
  • Zou, X.; Lin, Z.; Deng, Z.; Yin, D. Novel Approach to Predicting Hormetic Effects of Antibiotic Mixtures on Vibrio fischeri. Chemosphere 2013, 2013, 2070–2076. DOI: http://dx.doi.org/10.1016/j.chemosphere.2012.09.042.
  • Bain, P. A.; Kumar, A. Cytotoxicity of Binary Mixtures of Human Pharmaceuticals in a Fish Cell Line: Approaches for Non-Monotonic Concentration–Response Relationships. Chemosphere 2014, 108, 334–342. DOI: 10.1016/j.chemosphere.2014.01.077.
  • Ratkowsky, D. A. Handbook of Nonlinear Regression Models. Marcel Dekker: New York, NY, 1990.
  • Belz, R. G.; Duke, S. O. Modelling Biphasic Hormetic Dose Responses to Predict Sub-NOAEL Effects Using Plant Biology as an Example. Curr. Opin. Toxicol. 2022, 29, 36–42. DOI: 10.1016/j.cotox.2022.01.003.
  • Ratkowsky, D. A. Nonlinear Regression Modeling: A Unified Practical Approach. Marcel Dekker: New York, NY, 1983.
  • Streibig, J. C.; Walker, A.; Blair, A. M.; Anderson-Taylor, G.; Eagle, D. J.; Friedländer, H.; Hacker, E.; Iwanzik, W.; Kudsk, P.; Labhart, C.; et al. Variability of Bioassays with Metsulfuron-Methyl in Soil. Weed Res. 1995, 35, 215–224. DOI: 10.1111/j.1365-3180.1995.tb01784.x.
  • Seber, G. A. F.; Wild, C. J. Nonlinear Regression. John Wiley & Sons: New York, 1989.
  • Ritz, C.; Streibig, J. C. Bioassay Analysis Using R. J. Stat. Soft 2005, 12, 1–22. DOI: 10.18637/jss.v012.i05.
  • SAS Institute Inc. SAS/STAT® 14.3 User’s Guide. SAS Institute Inc: Cary, NC, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.