Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 2
140
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Estimating the proportion of bioaccessible lead (BaPb) in household dust wipe samples: a comparison of IVBA and PBET methods

, &
Pages 127-138 | Received 28 Sep 2022, Accepted 31 Jan 2023, Published online: 25 Feb 2023

References

  • Thomason, M. E.; Hect, J. L.; Rauh, V. A.; Trentacosta, C.; Wheelock, M. D.; Eggebrecht, A. T.; Espinoza-Heredia, C.; Burt, S. A. Prenatal Lead Exposure Impacts Cross-Hemispheric and Long-Range Connectivity in the Human Fetal Brain. Neuroimage 2019, 191, 186–192. DOI: 10.1016/j.neuroimage.
  • Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Environmental Health Science and Practice. Health Effects of Lead Exposure. https://www.cdc.gov/nceh/lead/ (accessed Mar 9, 2022).
  • Han, Z.; Bi, X.; Li, Z.; Yang, W.; Wang, L.; Yang, H.; Li, F.; Ma, Z. Occurrence, Speciation and Bioaccessibility of Lead in Chinese Rural Household Dust and the Associated Health Risk to Children. Atmos. Environ. 2012, 46, 65–70. DOI: 10.1016/j.atmosenv.2011.10.025.
  • Calabrese, E. J.; Stanek, E. J.; Gilbert, C. E. Evidence of Soil-Pica Behaviour and Quantification of Soil Ingested. Hum. Exp. Toxicol. 1991, 10, 245–249. DOI: 10.1177/096032719101000403.
  • United State Environmental Protection Agency. Child Specific Exposure Factors Handbook. Report No. 600-P-002B. U.S. EPA: Washington, DC, 2002.
  • United State Environmental Protection Agency. Protect Your Family from Sources of Lead. 2022. https://www.epa.gov/lead/protect-your-family-sources-lead (accessed Mar 20, 2022).
  • Pelley, J. Dust, Unsettled. ACS Cent. Sci. 2017, 3, 5–9. https://cenm.ag/housedust. DOI: 10.1021/acscentsci.7b00006.
  • Yu, C. H.; Yiin, L. M.; Lioy, P. J. The Bioaccessibility of Lead (Pb) from Vacuumed House Dust on Carpets in Urban Residences. Risk Anal 2006, 26, 125–134. DOI: 10.1111/j.1539-6924.2006.00710.x.
  • Turner, A.; Ip, K. H. Bioaccessibility of Metals in Dust from the Indoor Environment: Application of a Physiologically Based Extraction Test. Environ. Sci. Technol. 2007, 41, 7851–7856. DOI: 10.1021/es071194m.
  • Hettiarachchi, G. M.; Pierzynski, G. M. Soil Lead Bioavailability and in Situ Remediation of Lead-Contaminated Soils: A Review. Environ. Prog. 2004, 23, 78–93. DOI: 10.1002/ep.10004.
  • Kelley, M. E.; Brauning, S. E.; Schoof, R. A.; Ruby, M. V. Assessing Oral Bioavailabilty of Metals in Soil. Battelle Press: Columbus, OH, 2002, pp. 1–5.
  • Gorkhali, R.; Huang, K.; Kirberger, M.; Yang, J. J. Defining Potential Roles of Pb(2+) in Neurotoxicity From a Calciomics Approach. Metallomics: Integra Biome Sci. 2016, 8, 563–578. DOI: 10.1039/C6MT00038J.
  • Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P. Neurotoxic Effects and Biomarkers of Lead Exposure: A Review. Rev. Environ. Health 2009, 24, 15–45. DOI: 10.1515/reveh.2009.24.1.15.
  • Pelfrêne, A.; Douay, F. Assessment of Oral and Lung Bioaccessibility of Cd and Pb from Smelter-Impacted Dust. Environ. Sci. Poll. Res. 2017, 25, 3718–3730. DOI: 10.1007/s11356-017-0760-1.
  • Ruby, M. V.; Davis, A.; Link, T. E.; Schoof, R.; Chaney, R. L.; Freeman, G. B.; Bergstrom, P. Development of an in Vitro Screening Test to Evaluate the in Vivo Bioaccessibility of Ingested Mine-Waste Lead. Environ. Sci. Technol. 1993, 27, 2870–2877. DOI: 10.1021/es00049a030.
  • Schoof, R. A.; Butcher, M. K.; Sellstone, C.; Ball, R. W.; Fricke, J. R.; Keller, V.; Keehn, B. An Assessment of Lead Absorption from Soil Affected by Smelter Emissions. Environ. Geochem. Health 1995, 17, 189–199. DOI: 10.1007/BF00661331.
  • Casteel, S. W.; Weis, C. P.; Henningsen, G. M.; Brattin, W. J. Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Materials Using Young Swine. Environ. Health Persp. 2006, 114, 1162–1171. DOI: 10.1289/ehp.8852.
  • United States Environmental Protection Agency. Oswer 9285.7-77 2007, Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. United States Environmental Protection Agency: Office of Solid Waste and Emergency Response. 2007. https://semspub.epa.gov/work/HQ/175416.pdf (accessed Jan 3, 2023).
  • Drexler, J. W.; Brattin, W. J. An in Vitro Procedure for Estimation of Lead Relative Bioavailability: With Validation. Hum. Ecol. Risk Assess. 2007, 13, 383–401. DOI: 10.1080/10807030701226350.
  • Rasmussen, P. E.; Beauchemin, S.; Chénier, M.; Levesque, C.; MacLean, L. C. W.; Marro, L.; Jones-Otazo, H.; Petrovic, S.; McDonald, L. T.; Gardner, H. D. Canadian House Dust Study: Lead Bioaccessibility and Speciation. Environ. Sci. Technol. 2011, 145, 4959–4965. DOI: 10.1021/es104056m.
  • Denys, S.; Caboche, J.; Tack, K.; Delalain, P. Bioaccessibility of Lead in High Carbonate Soils. J. Environ. Sci. Health A: Tox. Hazard. Substit. Environ. Eng. 2007, 42, 1331–1339. DOI: 10.1080/10934520701435569.
  • Li, S. W.; Liu, X.; Sun, H. J.; Li, M. Y.; Zhao, D.; Luo, J.; Li, H. B.; Ma, L. Q. Effect of Phosphate Amendment on Relative Bioavailability and Bioaccessibility of Lead and Arsenic in Contaminated Soils. J. Hazard. Mater. 2017, 339, 256–263. DOI: 10.1016/j.jhazmat.2017.06.040.
  • Haque, E.; Jing, X.; Bostick, B. C.; Thorne, P. S. In Vitro and in Silico Bioaccessibility of Urban Dusts Contaminated by Multiple Legacy Sources of Lead (Pb). J. Hazard. Mater. Adv. 2022, 8, 100178. DOI: 10.1016/j.hazadv.2022.100178.
  • Sowers, T. D.; Nelson, C. M.; Diamond, G. L.; Blackmon, M. D.; Jerden, M. L.; Kirby, A. M.; Noerpel, M. R.; Scheckel, K. G.; Thomas, D. J.; Bradham, K. D. High Lead Bioavailability of Indoor Dust Contaminated with Paint Lead Species. Environ. Sci. Technol. 2021, 55, 402–411. DOI: 10.1021/acs.est.0c06908.
  • Attanayake, C. P.; Hettiarachchi, G. M.; Ma, Q.; Pierzynski, G. M.; Ransom, M. D. Lead Speciation and in Vitro Bioaccessibility of Compost-Amended Urban Garden Soils. J. Environ. Qual. 2017, 46, 1215–1224. DOI: 10.2134/jeq2017.02.0065.
  • Scheckel, K. G.; Diamond, G. L.; Burgess, M. F.; Klotzbach, J. M.; Maddaloni, M.; Miller, B. W.; Partridge, C. R.; Serda, S. M. Amending Soils with Phosphate as Means to Mitigate Soil Lead Hazard: A Critical Review of the State of the Science. J. Toxicol. Environ. Health B: Crit. Rev. 2013, 16, 337–380. DOI: 10.1080/10937404.2013.825216.
  • Karna, R.; Noerpel, M. P.; Nelson, C.; Elek, B.; Herbin-Davis, K.; Diamond, G.; Bradham, K.; Thomas, D. J.; Scheckel, K. G. Bioavailable Soil Pb Minimized by in Situ Transformation to Plumbojarosite. Proc. Natl. Acad. Sci. USA. 2021, 118, 1–6. DOI: 10.1073/pnas.2020315117.
  • Bosso, S. T.; Enzweiler, J.; Angelica, R. S. Lead Bioaccessibility in Soil and Mine Wastes after Immobilization with Phosphate. Water Air Soil Pollut. 2008, 195, 257–273. DOI: 10.1007/s11270-008-9744-6.
  • Lanphear, B. P.; Weitzman, M.; Winter, N. L.; Eberly, S.; Yakir, B.; Tanner, M.; Emond, M.; Matte, T. D. Lead-Contaminated House Dust and Urban Children’s Blood Lead Levels. Am. J. Pub. Health 1996, 86, 1416–1421. DOI: 10.2105/ajph.86.10.1416.
  • Oomen, A. G.; Rompelberg, C. J. M.; Bruil, M. A.; Dobbe, C. J. G.; Pereboom, D. P. K. H.; Sips, A. J. A. M. Development of an in Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Arch. Environ. Contam. Toxicol. 2003, 44, 281–287. DOI: 10.1007/s00244-002-1278-0.
  • Mushak, P. Gastro-Intestinal Absorption of Lead in Children and Adults: Overview of Biological and Biophysico-Chemical Aspects. Chem. Spec. Bioava. 1991, 3, 87–104. 10.1080/09542299.1991.11083160. DOI: 10.1080/09542299.1991.11083160.
  • Zia, M. H.; Codling, E. E.; Scheckel, K. G.; Chaney, R. L. In Vitro and in Vivo Approaches for the Measurement of Oral Bioavailability of Lead (Pb) in Contaminated Soils: A Review. Environ. Pollut. 2011, 159, 2320–2327. DOI: 10.1016/j.envpol.2011.04.043.
  • Bradham, K. D.; Nelson, C. M.; Kelly, J.; Pomales, A.; Scruton, K.; Dignam, T.; Misenheimer, J. C.; Li, K.; Obenour, D. R.; Thomas, D. J. Relationship between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils. Environ. Sci. Technol. 2017, 51, 10005–10011. DOI: 10.1021/acs.est.7b02058.
  • Boros, K.; Fortin, D.; Jayawardene, I.; Chénier, M.; Levesque, C.; Rasmussen, P. E. Comparison of Gastric versus Gastrointestinal PBET Extractions for Estimating Oral Bioaccessibility of Metals in House Dust. IJERPH 2017, 14, 92. DOI: 10.3390/ijerph14010092.
  • Sowers, T. D.; Bone, S. E.; Noerpel, M. R.; Blackmon, M. D.; Karna, R. R.; Scheckel, K. G.; Juhasz, A. L.; Diamond, G. L.; Thomas, D. J.; Bradham, K. D. Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. Environ. Sci. Technol. 2021, 55, 15950–15960. DOI: 10.1021/acs.est.0c06908.https://dx.doi.org/10.1021/acs.est.0c06908.
  • Deshommes, E.; Tardif, R.; Edwards, M.; Sauvé, S.; Prévost, M. Experimental Determination of the Oral Bioavailability and Bioaccessibility of Lead Particles. Chem. Cent. J. 2012, 6, 138. DOI: 10.1186/1752-153X-6-138.
  • Henry, H.; Naujokas, M. F.; Attanayake, C.; Basta, N. T.; Cheng, Z.; Hettiarachchi, G. M.; Maddaloni, M.; Schadt, C.; Scheckel, K. G. Bioavailability-Based in Situ Remediation to Meet Future Lead (Pb) Standards in Urban Soils and Gardens. Environ. Sci. Technol. 2015, 49, 8948–8958. DOI: 10.1021/acs.est.5b01693.
  • Smith, E.; Scheckel, K.; Miller, B. W.; Weber, J.; Juhasz, A. L. Influence of in Vitro Assay pH and Extractant Composition on as Bioaccessibility in Contaminated Soils. Sci. Total Environ. 2014, 473-474, 171–177. DOI: 10.1016/j.scitotenv.2013.12.030.
  • United State Environmental Protection Agency. “Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils,” Revision 1. Washington, DC. 2007. https://www.epa.gov/esam/us-epa-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-and-oils (accessed Aug 2, 2019)
  • United State Environmental Protection Agency. Guidance for the Sampling and Analysis of Lead in Indoor Residential Dust for Use in the Integrated Exposure Uptake Biokinetic (IEUBK) Model, United States Environmental Protection Agency. Oswer 9285.7-81, https://semspub.epa.gov/work/HQ/174572.pdf. (accessed Apr 19, 2020), 2008.
  • United State Environmental Protection Agency. Hazard Standards and Clearance Levels for Lead in Paint, Dust and Soil (TSCA Sections 402 and 403). US EPA/Lead paint program, Office of pollution prevention and toxics. Washington (accessed Jan 2, 2023), 2020
  • American Society for Testing and Materials. ASTM E 1728: “Standard Practice for Field Collection of Settled Dust Samples Using Wipe Sampling Methods for Subsequent Lead Determination, 2021” http://www.astm.org/Standards/E1728.htm. (accessed Mar 9, 2020).
  • United State Environmental Protection Agency. Method 1340: In Vitro Bioaccessibility Assay for Lead in Soil. SW-846 hazardous waste test methods. https://www.epa.gov/sites/default/files/2017-03/documents/method_1340_update_vi_final_3-22-17.pdf (accessed 21 Feb. 2023).
  • Ruby, M. V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C. M. Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environ. Sci. Technol. 1996, 30, 422–−430. DOI: 10.1021/es950057z.
  • Attanayake, C. P.; Hettiarachchi, G. M.; Harms, A.; Presley, D.; Martin, S.; Pierzynski, G. M. Field Evaluations on Soil Plant Transfer of Lead from an Urban Garden Soil. J Environ Qual 2014, 43, 475–487. DOI: 10.2134/jeq2013.07.0273.
  • Obrycki, J. F.; Basta, N. T.; Scheckel, K.; Stevens, B. N.; Minca, K. K. Phosphorus Amendment Efficacy for in Situ Remediation of Soil Lead Depends on the Bioaccessible Method. J. Environ. Qual. 2016, 45, 37–44. DOI: 10.2134/jeq2015.05.0244.
  • Brown, S. L.; Chaney, R. L. A Rapid in-Vitro Procedure to Characterize the Effectiveness of a Variety of in-Situ Lead Remediation Technologies. In Proc. of the 4th Int. Conf. on the Bio-Geochemistry of Trace Elements; Iskandar, I. K.; Hardy, S. E.; Chang, A. C.; Pierzynski G. M. Eds.; U.S. Army Cold Regions Res. and Eng. Lab.: Berkeley, CA. 23–26 June 1997.
  • American Society for Testing and Materials. ASTM E 1644 -17 Standard Practice for Hot Plate Digestion of Dust Wipe Samples for the Determination of Lead. 2021, American Society of Testing and Materials: Philadelphia, PA.
  • International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 87. IARC working group on the evaluation of carcinogenic risks to humans. 2006, International Agency for Research on Cancer: Lyon. https://monographs.iarc.who.int/. (accessed May 12, 2022).
  • Scheckel, K. G.; Ryan, J. A.; Allen, D.; Lescano, N. V. Determining Speciation of Pb in Phosphate-Amended Soils: Method Limitations. Sci. Total Environ. 2005, 350, 261–272. DOI: 10.1016/j.scitotenv.2005.01.020.
  • Kastury, F.; Smith, E.; Lombi, E.; Donnelley, M. W.; Cmielewski, P. L.; Parsons, D. W.; Noerpel, M.; Scheckel, K. G.; Kingston, A. M.; Myers, G. R.; et al. Dynamics of Lead Bioavailability and Speciation in Indoor Dust and X-Ray Spectroscopic Investigation of the Link between Ingestion and Inhalation Pathways. Environ. Sci. Technol. 2019, 53, 11486–11495. DOI: 10.1021/acs.est.9b03249.
  • Brown, S.; Chaney, R.; Hallfrisch, J.; Ryan, J. A.; Berti, W. R. In Situ Soil Treatments to Reduce the Phyto- and Bioavailability of Lead, Zinc, and Cadmium. J. Environ. Qual. 2004, 33, 522–531. DOI: 10.2134/jeq2003.1000.
  • Li, H. B.; Cui, X. Y.; Li, K.; Li, J.; Juhasz, A. L.; Ma, L. Q. Assessment of in Vitro Lead Bioaccessibility in House Dust and Its Relationship to in Vivo Lead Relative Bioavailability. Environ. Sci. Technol. 2014, 48, 8548–8555. DOI: 10.1021/es501899j.
  • Armstrong, D. Review Article: Gastric pH - the Most Relevant Predictor of Benefit in Reflux Disease? Aliment Pharmacol. Ther. 2004, 20, 19–26. DOI: 10.1111/j.1365-2036.2004.02140.x.
  • Tutuian, R.; Katz, P. O.; Bochenek, W.; Castell, D. O. Dose-Dependent Control of Intragastric pH by Pantoprazole, 10, 20 or 40 Mg, in Healthy Volunteers. Aliment Pharmacol. Ther. 2002, 16, 829–836. DOI: 10.1046/j.1365-2036.2002.01232.x.
  • Huang, J. Q.; Goldwater, D. R.; Thomson, A. B. R.; Appelman, S. A.; Sridhar, S.; James, C. F.; Chiu, Y. L.; Pilmer, B. L.; Keith, R. G.; Hunt, R. H. Acid Suppression in Healthy Subjects following Lansoprazole or Pantoprazole. Aliment Pharmacol. Ther. 2002, 16, 425–433. DOI: 10.1111/j.1365-2982.2007.00909.x.
  • Crawford, M.; Lerman, J.; Christensen, S.; Farrow-Gillespie, A. Effects of Duration of Fasting on Gastric Fluid pH and Volume in Healthy Children. Anesth. Analg. 1990, 71, 400–403. DOI: 10.1213/00000539-199010000-00014.
  • Razak, M. A.; Begum, P. S.; Viswanath, B.; Rajagopal, S. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxid. Med. Cell Longev. 2017, 2017, 1716701. DOI: 10.1155/2017/1716701.
  • Pikal-Cleland, K. A.; Cleland, J. L.; Anchordoquy, T. J.; Carpenter, J. F. Effect of Glycine on pH Changes and Protein Stability during Freeze-Thawing in Phosphate Buffer Systems. J. Pharm. Sci. 2002, 91, 1969–1979. DOI: 10.1002/jps.10184.
  • Miller, D. D.; Schricker, B. R.; Rasmussen, R. R.; Van Campen, D. An in Vitro Method for Estimation of Iron Availability from Meals. Am. J. Clin. Nutr. 1981, 34, 2248–2256. DOI: 10.1093/ajcn/34.10.2248.
  • Britannica, The Editors of Encyclopaedia. "pepsin". Encyclopedia Britannica, 3 Jul. 2020, https://www.britannica.com/science/pepsin. (accessed Jan 10 2022).
  • Yang, K.; Cattle, S. R. Bioaccessibility of Lead in Urban Soil of Broken Hill, Australia: A Study Based on in Vitro Digestion and the IEUBK Model. Sci. Total Environ. 2015, 538, 922–933. DOI: 10.1016/j.scitotenv.2015.08.084.
  • Romero, F. M.; Villalobos, M.; Aguirre, R.; Gutiérrez, M. E. Solid-Phase Control on Lead Bioaccessibility in Smelter-Impacted Soils. Arch. Environ. Contam. Toxicol. 2008, 55, 566–575. DOI: 10.1007/s00244-008-9152-3.
  • Yang, J.; Mosby, D. E.; Casteel, S. W.; Blanchar, R. W. In Vitro Lead Bioaccessibility and Phosphate Leaching as Affected by Surface Application of Phosphoric Acid in Lead-Contaminated Soil. Arch. Environ. Contam. Toxicol. 2002, 43, 399–405. DOI: 10.1007/s00244-002-1197-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.