Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 2
148
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Apigenin attenuates tetrabromobisphenol A-induced cytotoxicity in neuronal SK-N-MC cells

, , &
Pages 152-162 | Received 21 Jun 2021, Accepted 27 Jan 2023, Published online: 26 Feb 2023

References

  • de Wit, C. A.; Herzke, D.; Vorkamp, K. Brominated Flame Retardants in the Arctic Environment—Trends and New Candidates. Sci. Total Environ. 2010, 408, 2885–2918. DOI: 10.1016/j.scitotenv.2009.08.037.
  • Thomsen, C.; Lundanes, E.; Becher, G. Brominated Flame Retardants in Archived Serum Samples from Norway: A Study on Temporal Trends and the Role of Age. Environ. Sci. Technol. 2002, 36, 1414–1418. DOI: 10.1021/es0102282.
  • Johnson-Restrepo, B.; Adams, D. H.; Kannan, K. Tetrabromobisphenol A (TBBPA) and Hexabromocyclododecanes (HBCDs) in Tissues of Humans, Dolphins, and Sharks from the United States. Chemosphere 2008, 70, 1935–1944. DOI: 10.1016/j.chemosphere.2007.10.002.
  • Sjödin, A.; Patterson, D. G.; Jr.; Bergman, A. A Review on Human Exposure to Brominated Flame Retardants–Particularly Polybrominated Diphenyl Ethers. Environ. Int. 2003, 29, 829–839.
  • Wu, S.; Ji, G.; Liu, J.; Zhang, S.; Gong, Y.; Shi, L. TBBPA Induces Developmental Toxicity, Oxidative Stress, and Apoptosis in Embryos and Zebrafish Larvae (Danio rerio). Environ. Toxicol. 2016, 31, 1241–1249. DOI: 10.1002/tox.22131.
  • Choi, E. M.; Suh, K. S.; Rhee, S. Y.; Oh, S.; Kim, S. W.; Pak, Y. K.; Choe, W.; Ha, J.; Chon, S. Exposure to Tetrabromobisphenol a Induces Cellular Dysfunction in Osteoblastic MC3T3-E1 Cells. J. Environ. Sci. Health A 2017, 52, 561–570. DOI: 10.1080/10934529.2017.1284435.
  • Suh, K. S.; Choi, E. M.; Rhee, S. Y.; Oh, S.; Kim, S. W.; Pak, Y. K.; Choe, W.; Ha, J.; Chon, S. Tetrabromobisphenol a Induces Cellular Damages in Pancreatic Beta-Cells in Vitro. J. Environ. Sci. Health A 2017, 52, 624–631. DOI: 10.1080/10934529.2017.1294964.
  • Park, S. Y.; Choi, E. M.; Suh, K. S.; Kim, H. S.; Chin, S. O.; Rhee, S. Y.; Kim, D. Y.; Oh, S.; Chon, S. Tetrabromobisphenol a Promotes the Osteoclastogenesis of RAW264.7 Cells Induced by Receptor Activator of NF-Kappa b Ligand in Vitro. J. Korean Med. Sci. 2019, 34, e267. DOI: 10.3346/jkms.2019.34.e267.
  • Ogunbayo, O. A.; Lai, P. F.; Connolly, T. J.; Michelangeli, F. Tetrabromobisphenol A (TBBPA), Induces Cell Death in TM4 Sertoli Cells by Modulating Ca2+ Transport Proteins and Causing Dysregulation of Ca2+ Homeostasis. Toxicol. in Vitro 2008, 22, 943–952. DOI: 10.1016/j.tiv.2008.01.015.
  • Reistad, T.; Mariussen, E.; Ring, A.; Fonnum, F. In Vitro Toxicity of tetrabromobisphenol-A on Cerebellar Granule Cells: Cell Death, Free Radical Formation, Calcium Influx and Extracellular Glutamate. Toxicol. Sci. 2007, 96, 268–278. DOI: 10.1093/toxsci/kfl198.
  • Wojtowicz, A. K.; Szychowski, K. A.; Kajta, M. PPAR-γ Agonist GW1929 But Not Antagonist GW9662 Reduces TBBPA-Induced Neurotoxicity in Primary Neocortical Cells Neurotox. Neurotoxic Res. 2014, 25, 311–322. DOI: 10.1007/s12640-013-9434-z.
  • Cho, J. H.; Lee, S.; Jeon, H.; Kim, A. H.; Lee, W.; Lee, Y.; Yang, S.; Yun, J.; Jung, Y. S.; Lee, J. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells through Oxidative Stress and Mitochondrial Dysfunction. Neurotoxic Res. 2020, 38, 74–85. DOI: 10.1007/s12640-020-00179-z.
  • Zhang, Y.; Wang, X.; Chen, C.; An, J.; Shang, Y.; Li, H.; Xia, H.; Yu, J.; Wang, C.; Liu, Y.; Guo, S. Regulation of TBBPA-Induced Oxidative Stress on Mitochondrial Apoptosis in L02 Cells through the Nrf2 Signaling Pathway. Chemosphere 2019, 226, 463–471. DOI: 10.1016/j.chemosphere.2019.03.167.
  • Kim, J.; Lee, H. J.; Lee, K. W. Naturally Occurring Phytochemicals for the Prevention of Alzheimer’s Disease. J. Neurochem. 2010, 112, 1415–1430. DOI: 10.1111/j.1471-4159.2009.06562.x.
  • Hostetler, G. L.; Ralston, R. A.; Schwartz, S. J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. DOI: 10.3945/an.116.012948.
  • Huang, C. S.; Lii, C. K.; Lin, A. H.; Yeh, Y. W.; Yao, H. T.; Li, C. C.; Wang, T. S.; Chen, H. W. Protection by Chrysin, Apigenin, and Luteolin against Oxidative Stress is Mediated by the Nrf2-Dependent up-Regulation of Heme Oxygenase 1 and Glutamate Cysteine Ligase in Rat Primary Hepatocytes. Arch. Toxicol. 2013, 87, 167–178. DOI: 10.1007/s00204-012-0913-4.
  • Telange, D. R.; Patil, A. T.; Pethe, A. M.; Fegade, H.; Anand, S.; Dave, V. S. Formulation and Characterization of an Apigenin-Phospholipid Phytosome (APLC) for Improved Solubility, in Vivo Bioavailability, and Antioxidant Potential. Eur. J. Pharm. Sci. 2017, 108, 36–49. DOI: 10.1016/j.ejps.2016.12.009.
  • Zhao, L.; Wang, J. L.; Liu, R.; Li, X. X.; Li, J. F.; Zhang, L. Neuroprotective,anti-Amyloidogenic and Neurotrophic Effects of Apigenin in an Alzheimer’sdisease Mouse Model. Molecules 2013, 18, 9949–9965. DOI: 10.3390/molecules18089949.
  • Omar, S. H.; Scott, C. J.; Hamlin, A. S.; Obied, H. K. The Protective Role of Plant Biophenols in Mechanisms of Alzheimer’s Disease. J. Nutr. Biochem. 2017, 47, 1–20. DOI: 10.1016/j.jnutbio.2017.02.016.
  • Balez, R.; Steiner, N.; Engel, M.; Muñoz, S. S.; Lum, J. S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; et al. Neuroprotective Effects of Apigenin against Inflammation, Neuronal Excitability and Apoptosis in an Induced Pluripotent Stem Cell Model of Alzheimer’s Disease. Sci. Rep. 2016, 6, 31450. DOI: 10.1038/srep31450.
  • Zhang, F.; Li, F.; Chen, G. Neuroprotective Effect of Apigenin in Rats after Contusive Spinal Cord Injury. Neurol. Sci. 2014, 35, 583–588. DOI: 10.1007/s10072-013-1566-7.
  • Amini, R.; Yazdanparast, R.; Ghaffari, S. H. Apigenin Modulates the Expression Levels of Pro-Inflammatory Mediators to Reduce the Human Insulin Amyloid-Induced Oxidant Damages in SK-N-MC Cells. Hum. Exp. Toxicol. 2015, 34, 642–653. DOI: 10.1177/0960327114554046.
  • Suh, K. S.; Oh, S.; Woo, J. T.; Kim, S. W.; Kim, J. W.; Kim, Y. S.; Chon, S. Apigenin Attenuates 2-deoxy-D-Ribose-Induced Oxidative Cell Damage in HIT-T15 Pancreatic β-Cells. Biol. Pharm. Bull. 2012, 35, 121–126. DOI: 10.1248/bpb.35.121.
  • Kleinerman, E. S.; Lachman, L. B.; Knowles, R. D.; Snyderman, R.; Cianciolo, G. J. A Synthetic Peptide Homologous to the Envelope Proteins of Retroviruses Inhibits Monocyte-Mediated Killing by Inactivating Interleukin 1. J. Immunol. 1987, 139, 2329–2337. DOI: 10.4049/jimmunol.139.7.2329.
  • Jana, A.; Pahan, K. Fibrillar Amyloid-Beta-Activated Human Astroglia Kill Primary Human Neurons via Neutral Sphingomyelinase: Implications for Alzheimer’s Disease. J. Neurosci. 2010, 30, 12676–12689. DOI: 10.1523/JNEUROSCI.1243-10.2010.
  • Klionsky, D. J.; Abdalla, F. C.; Abeliovich, H.; Abraham, R. T.; Acevedo-Arozena, A.; Adeli, K.; Agholme, L.; Agnello, M.; Agostinis, P.; Aguirre-Ghiso, J. A.; et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy. Autophagy 2012, 8, 445–544. DOI: 10.4161/auto.19496.
  • Al-Mousa, F.; Michelangeli, F. Some Commonly Used Brominated Flame Retardants Cause Ca2+-ATPase Inhibition, Beta-Amyloid Peptide Release and Apoptosis in SH-SY5Y Neuronal Cells. PLoS One 2012, 7, e33059. DOI: 10.1371/journal.pone.0033059.
  • Cavazzoni, M.; Barogi, S.; Baracca, A.; Parenti Castelli, G.; Lenaz, G. The Effect of Aging and an Oxidative Stress on Peroxide Levels and the Mitochondrial Membrane Potential in Isolated Rat Hepatocytes. FEBS Lett. 1999, 449, 53–56. DOI: 10.1016/S0014-5793(99)00400-7.
  • Keller, J. N.; Kindy, M. S.; Holtsberg, F. W.; St Clair, D. K.; Yen, H. C.; Germeyer, A.; Steiner, S. M.; Bruce-Keller, A. J.; Hutchins, J. B.; Mattson, M. P. Mitochondrial Manganese Superoxide Dismutase Prevents Neural Apoptosis and Reduces Ischemic Brain Injury: Suppression of Peroxynitrite Production, Lipid Peroxidation, and Mitochondrial Dysfunction. J. Neurosci. 1998, 18, 687–697. DOI: 10.1523/JNEUROSCI.18-02-00687.1998.
  • Mukhopadhyay, P.; Rajesh, M.; Kashiwaya, Y.; Haskó, G.; Pacher, P. Simple Quantitative Detection of Mitochondrial Superoxide Production in Live Cells. Biochem. Biophys. Res. Commun. 2007, 358, 203–208.
  • Petit, J. M.; Maftah, A.; Ratinaud, M. H.; Julien, R. 10N-Nonyl Acridine Orange Interacts with Cardiolipin and Allows the Quantification of This Phospholipid in Isolated Mitochondria. Eur. J. Biochem. 1992, 209, 267–273. DOI: 10.1111/j.1432-1033.1992.tb17285.x.
  • Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. DOI: 10.1152/physrev.00018.2001.
  • Kovac, S.; Angelova, P. R.; Holmström, K. M.; Zhang, Y.; Dinkova-Kostova, A. T.; Abramov, A. Y. Nrf2 Regulates ROS Production by Mitochondria and NADPH Oxidase. Biochim. Biophys. Acta 2015, 1850, 794–801.
  • Giles, G. I. The Redox Regulation of Thiol Dependent Signaling Pathways in Cancer. Curr. Pharm. Des. 2006, 12, 4427–4443. DOI: 10.2174/138161206779010549.
  • Gorman, A. M. Neuronal Cell Death in Neurodegenerative Diseases: Recurring Themes around Protein Handling. J. Cell Mol. Med. 2008, 12, 2263–2280. DOI: 10.1111/j.1582-4934.2008.00402.x.
  • Lenart, J.; Zieminska, E.; Diamandakis, D.; Lazarewicz, J. W. Altered Expression of Genes Involved in Programmed Cell Death in Primary Cultured Rat Cerebellar Granule Cells Acutely Challenged with Tetrabromobisphenol A. Neurotoxicology 2017, 63, 126–136. DOI: 10.1016/j.neuro.2017.09.014.
  • Szychowski, K. A.; Wójtowicz, A. K. TBBPA Causes Neurotoxic and the Apoptotic Responses in Cultured Mouse Hippocampal Neurons in Vitro. Pharmacol. Rep. 2016, 68, 20–26. DOI: 10.1016/j.pharep.2015.06.005.
  • Klionsky, D. J.; Abdelmohsen, K.; Abe, A.; Abedin, M. J.; Abeliovich, H.; Arozena, A. A.; Adachi, H.; Adams, C. M.; Adams, P. D.; Adeli, K.; et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1–222
  • Song, W.; Ma, Z.; Zhang, Y.; Yang, C. Autophagy Plays a Dual Role during Intracellular siRNA Delivery by Lipoplex and Polyplex Nanoparticles. Acta Biomater. 2017, 58, 196–204. DOI: 10.1016/j.actbio.2017.05.038.
  • Ba, M. C.; Long, H.; Cui, S. Z.; Gong, Y. F.; Yan, Z. F.; Wang, S.; Wu, Y. B. Mild Hyperthermia Enhances Sensitivity of Gastric Cancer Cells to Chemotherapy through Reactive Oxygen Species‐Induced Autophagic Death. Tumour Biol. 2017, 39, 1010428317711952. DOI: 10.1177/1010428317711952.
  • Nilsson, P.; Saido, T. C. Dual Roles for Autophagy: Degradation and Secretion of Alzheimer’s Disease a Beta Peptide. Bioessays 2014, 36, 570–578. DOI: 10.1002/bies.201400002.
  • Lipinski, M. M.; Zheng, B.; Lu, T.; Yan, Z.; Py, B. F.; Ng, A.; Xavier, R. J.; Li, C.; Yankner, B. A.; Scherzer, C. R.; et al. Genome‐Wide Analysis Reveals Mechanisms Modulating Autophagy in Normal Brain Aging and in Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2010, 107, 14164–14169. DOI: 10.1073/pnas.1009485107.
  • Sarkar, D.; Fisher, P. B. Molecular Mechanisms of Aging-Associated Inflammation. Cancer Lett. 2006, 236, 13–23. DOI: 10.1016/j.canlet.2005.04.009.
  • Lin, C. M.; Chen, C. T.; Lee, H. H.; Lin, J. K. Prevention of Cellular ROS Damage by Isovitexin and Related Flavonoids. Planta Med. 2002, 68, 365–367. DOI: 10.1055/s-2002-26753.
  • Chan, L. P.; Chou, T. H.; Ding, H. Y.; Chen, P. R.; Chiang, F. Y.; Kuo, P. L.; Liang, C. H. Apigenin Induces Apoptosis via Tumor Necrosis Factor Receptor- and Bcl-2-Mediated Pathway and Enhances Susceptibility of Head and Neck Squamous Cell Carcinoma to 5-Fluorouracil and Cisplatin. Biochim. Biophys. Acta 2012, 1820, 1081–1091. DOI: 10.1016/j.bbagen.2012.04.013.
  • Cos, P.; Ying, L.; Calomme, M.; Hu, J. P.; Cimanga, K.; Van Poel, B.; Pieters, L.; Vlietinck, A. J.; Vanden Berghe, D. Structure–Activity Relationship and Classification of Flavonoids as Inhibitors of Xanthine Oxidase and Superoxide Scavengers. J. Nat. Prod. 1998, 61, 71–76. DOI: 10.1021/np970237h.
  • Amini, R.; Yazdanparast, R.; Bahramikia, S. Apigenin Reduces Human Insulin Fibrillation in Vitro and Protects SK-N-MC Cells against Insulin Amyloids. Int. J. Biol. Macromol. 2013, 60, 334–340. DOI: 10.1016/j.ijbiomac.2013.06.013.
  • Mattson, M. P. Oxidative Stress, Perturbed Calcium Homeostasis, and Immune Dysfunction in Alzheimer’s Disease. J. Neurovirol. 2002, 8, 539–550. DOI: 10.1080/13550280290100978.
  • Bezprozvanny, I.; Mattson, M. P. Neuronal Calcium Mishandling and the Pathogenesis of Alzheimer’s Disease. Trends Neurosci. 2008, 31, 454–463. DOI: 10.1016/j.tins.2008.06.005.
  • Michelangeli, F.; Ogunbayo, O. A.; Wootton, L. L.; Lai, P. F.; Al-Mousa, F.; Harris, R. M.; Waring, R. H.; Kirk, C. J. Endocrine Disrupting Alkylphenols: Structural Requirements for Their Adverse Effects on Ca2+ Pumps, Ca2+ Homeostasis & Sertoli TM4 Cell Viability. Chem. Biol. Interact. 2008, 176, 220–226. DOI: 10.1016/j.cbi.2008.08.005.
  • Franklin, J. L. Redox Regulation of the Intrinsic Pathway in Neuronal Apoptosis. Antioxid. Redox Signal 2011, 14, 1437–1448. DOI: 10.1089/ars.2010.3596.
  • Zieminska, E.; Lenart, J.; Diamandakis, D.; Lazarewicz, J. W. The Role of Ca(2+) Imbalance in the Induction of Acute Oxidative Stress and Cytotoxicity in Cultured Rat Cerebellar Granule Cells Challenged with Tetrabromobisphenol A. Neurochem. Res. 2017, 42, 777–787. DOI: 10.1007/s11064-016-2075-x.
  • Lee, J. M.; Johnson, J. A. An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism. J. Biochem. Mol. Biol. 2004, 37, 139–143. DOI: 10.5483/bmbrep.2004.37.2.139.
  • Ohtsuji, M.; Katsuoka, F.; Kobayashi, A.; Aburatani, H.; Hayes, J. D.; Yamamoto, M. Nrf1 and Nrf2 Play Distinct Roles in Activation of Antioxidant Response Element-Dependent Genes. J. Biol. Chem. 2008, 283, 33554–33562. [Database] DOI: 10.1074/jbc.M804597200.
  • Hybertson, B. M.; Gao, B.; Bose, S. K.; McCord, J. M. Oxidative Stress in Health and Disease: The Therapeutic Potential of Nrf2 Activation. Mol. Aspects Med. 2011, 32, 234–246. DOI: 10.1016/j.mam.2011.10.006.
  • Ramsey, C. P.; Glass, C. A.; Montgomery, M. B.; Lindl, K. A.; Ritson, G. P.; Chia, L. A.; Hamilton, R. L.; Chu, C. T.; Jordan-Sciutto, K. L. Expression of nrf2 in Neurodegenerative Disease. J. Neuropathol. Exp. Neurol. 2007, 66, 75–85. DOI: 10.1097/nen.0b013e31802d6da9.
  • Tarafdar, A.; Pula, G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018, 19, 3824. DOI: 10.3390/ijms19123824.
  • Sciarretta, S.; Volpe, M.; Sadoshima, J. NOX4 Regulates Autophagy during Energy Deprivation. Autophagy 2014, 10, 699–701. DOI: 10.4161/auto.27955.
  • Baloyannis, S. J. Mitochondrial Alterations in Alzheimer’s Disease. J. Alzheimers Dis. 2006, 9, 119–126. DOI: 10.3233/jad-2006-9204.
  • Zsurka, G.; Kunz, W. S. Mitochondrial Dysfunction and Seizures: The Neuronal Energy Crisis. Lancet Neurol. 2015, 14, 956–966. DOI: 10.1016/S1474-4422(15)00148-9.
  • Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R. C.; Spiegelman, B. M. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell 1999, 98, 115–124. DOI: 10.1016/S0092-8674(00)80611-X.
  • Ji, J.; Kline, A. E.; Amoscato, A.; Samhan-Arias, A. K.; Sparvero, L. J.; Tyurin, V. A.; Tyurina, Y. Y.; Fink, B.; Manole, M. D.; Puccio, A. M.; et al. Lipidomics Identifies Cardiolipin Oxidation as a Mitochondrial Target for Redox Therapy of Brain Injury. Nat. Neurosci. 2012, 15, 1407–1413. DOI: 10.1038/nn.3195.
  • Zhao, Z.; Zhang, X.; Zhao, C.; Choi, J.; Shi, J.; Song, K.; Turk, J.; Ma, Z. A. Protection of Pancreatic Beta-Cells by Group via Phospholipase A(2)-Mediated Repair of Mitochondrial Membrane Peroxidation. Endocrinology 2010, 151, 3038–3048. DOI: 10.1210/en.2010-0016.
  • Petrosillo, G.; Moro, N.; Paradies, V.; Ruggiero, F. M.; Paradies, G. Increased Susceptibility to Ca(2+)-Induced Permeability Transition and to Cytochrome c Release in Rat Heart Mitochondria with Aging: Effect of Melatonin. J. Pineal Res. 2010, 48, 340–346. DOI: 10.1111/j.1600-079X.2010.00758.x.
  • Kagan, V. E.; Tyurin, V. A.; Jiang, J.; Tyurina, Y. Y.; Ritov, V. B.; Amoscato, A. A.; Osipov, A. N.; Belikova, N. A.; Kapralov, A. A.; Kini, V.; et al. Cytochrome c Acts as a Cardiolipin Oxygenase Required for Release of Proapoptotic Factors. Nat. Chem. Biol. 2005, 1, 223–232. DOI: 10.1038/nchembio727.
  • Petrosillo, G.; Casanova, G.; Matera, M.; Ruggiero, F. M.; Paradies, G. Interaction of Peroxidized Cardiolipin with Rat-Heart Mitochondrial Membranes: Induction of Permeability Transition and Cytochrome c Release. FEBS Lett. 2006, 580, 6311–6316. DOI: 10.1016/j.febslet.2006.10.036.
  • Lee, S.; Youn, K.; Jun, M. Major Compounds of Red Ginseng Oil Attenuate Aβ25‑35‑Induced Neuronal Apoptosis and Inflammation by Modulating MAPK/NF‑κB Pathway. Food Funct. 2018, 9, 4122–‑4134. DOI: 10.1039/C8FO00795K.
  • Liu, H.; Deng, Y.; Gao, J.; Liu, Y.; Li, W.; Shi, J.; Gong, Q. Sodium Hydrosulfide Attenuates Beta‑Amyloid‑Induced Cognitive Deficits and Neuroinflammation via Modulation of MAPK/NF‑κB Pathway in Rats. Curr. Alzheimer Res. 2015, 12, 673–683. DOI: 10.2174/1567205012666150713102326.
  • Wang, S.; Zhang, C.; Sheng, X.; Zhang, X.; Wang, B.; Zhang, G. Peripheral Expression of MAPK Pathways in Alzheimer’s and Parkinson’s Diseases. J. Clin. Neurosci. 2014, 21, 810–814. DOI: 10.1016/j.jocn.2013.08.017.
  • Kim, E. K.; Choi, E. J. Compromised MAPK Signaling in Human Diseases: An Update. Arch. Toxicol. 2015, 89, 867–882. DOI: 10.1007/s00204-015-1472-2.
  • Cagnol, S.; Chambard, J. C. ERK and Cell Death: Mechanisms of ERK-Induced Cell Death-Apoptosis, Autophagy and Senescence. FEBS J. 2010, 277, 2–21. DOI: 10.1111/j.1742-4658.2009.07366.x.
  • Subramaniam, S.; Unsicker, K. ERK and Cell Death: ERK1/2 in Neuronal Death. FEBS J. 2010, 277, 22–29. DOI: 10.1111/j.1742-4658.2009.07367.x.
  • Yang, Z. Z.; Tschopp, O.; Baudry, A.; Dümmler, B.; Hynx, D.; Hemmings, B. A. Physiological Functions of Protein Kinase B/Akt. Biochem. Soc. Trans. 2004, 32, 350–354. DOI: 10.1042/bst0320350.
  • Fu, X-y.; Yang, M-f.; Cao, M-z.; Li, D-w.; Yang, X-y.; Sun, J-y.; Zhang, Z-y.; Mao, L-l.; Zhang, S.; Wang, F-z.; et al. Strategy to Suppress Oxidative Damage-Induced Neurotoxicity in PC12 Cells by Curcumin, the Role of ROS-Mediated DNA Damage and MAPKs and AKT Pathways. Mol. Neurobiol. 2016, 53, 369–378. DOI: 10.1007/s12035-014-9021-1.
  • Bai, D.; Ueno, L.; Vogt, P. K. Akt-Mediated Regulation of NFkappaB and the Essentialness of NFkappaB for the Oncogenicity of PI3K and Akt. Int. J. Cancer 2009, 125, 2863–2870. DOI: 10.1002/ijc.24748.
  • Kane, L. P.; Shapiro, V. S.; Stokoe, D.; Weiss, A. Induction of NF-kappaB by the Akt/PKB Kinase. Curr. Biol. 1999, 9, 601–604. DOI: 10.1016/s0960-9822(99)80265-6.
  • Lee, H. K.; Kumar, P.; Fu, Q.; Rosen, K. M.; Querfurth, H. W. The Insulin/Akt Signalling Pathway is Targeted by Intracellular Beta-Amyloid. Mol. Biol. Cell 2009, 20, 1533–1544. DOI: 10.1091/mbc.e08-07-0777.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.