Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 5
132
Views
0
CrossRef citations to date
0
Altmetric
Articles

Biosorption of cadmium from aqueous solution by combination of microorganisms and chitosan: response surface methodology for optimization of removal conditions

, , , , , & show all
Pages 433-446 | Received 07 Oct 2022, Accepted 07 Jan 2023, Published online: 10 Apr 2023

References

  • Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Siadat, S. D.; Mohammadi, M.; Mortazavian, A. M. Using Probiotics for Mitigation of Acrylamide in Food Products: A Mini Review. Curr. Opin. Food Sci. 2020, 32, 67–75. DOI: 10.1016/j.cofs.2020.01.011.
  • Yousefi, M.; Khorshidian, N.; Hosseini, H. In Vitro PAH-Binding Ability of Lactobacillus brevis TD4. Polycycl. Aromat. Compd. 2022, 42, 1–17. DOI: 10.1080/10406638.2021.1889624.
  • Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface Binding of Toxins and Heavy Metals by Probiotics. Mini Rev. Med. Chem. 2014, 14, 84–98. DOI: 10.2174/1389557513666131211105554.
  • Khanniri, E.; Yousefi, M.; Mortazavian, A. M.; Khorshidian, N.; Sohrabvandi, S.; Arab, M.; Koushki, M. R. Effective Removal of Lead (II) Using Chitosan and Microbial Adsorbents: Response Surface Methodology (RSM). Int. J. Biol. Macromol. 2021, 178, 53–62. DOI: 10.1016/j.ijbiomac.2021.02.065.
  • Elgarahy, A. M.; Elwakeel, K. Z.; Akhdhar, A.; Hamza, M. F. Recent Advances in Greenly Synthesized Nanoengineered Materials for Water/Wastewater Remediation: An Overview. Nanotechnol. Environ. Eng. 2021, 6, 24. DOI: 10.1007/s41204-021-00104-5.
  • Onakpa, M. M.; Njan, A. A.; Kalu, O. C. A Review of Heavy Metal Contamination of Food Crops in Nigeria. Ann. Glob. Health 2018, 84, 488–494. DOI: 10.29024/aogh.2314.
  • Kinuthia, G. K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of Heavy Metals in Wastewater and Soil Samples from Open Drainage Channels in Nairobi, Kenya: Community Health Implication. Sci. Rep. 2020, 10, 1–13. DOI: 10.1038/s41598-020-65359-5.
  • Sharma, S.; Nagpal, A. K.; Kaur, I. Heavy Metal Contamination in Soil, Food Crops and Associated Health Risks for Residents of Ropar Wetland, Punjab, India and Its Environs. Food Chem. 2018, 255, 15–22. DOI: 10.1016/j.foodchem.2018.02.037.
  • Awual, M. R. A Facile Composite Material for Enhanced Cadmium (II) Ion Capturing from Wastewater. J. Environ. Chem. Eng. 2019, 7, 103378. DOI: 10.1016/j.jece.2019.103378.
  • Awual, M. R.; Hasan, M. M. A Ligand Based Innovative Composite Material for Selective Lead(II) Capturing from Wastewater. J. Mol. Liq. 2019, 294, 111679. DOI: 10.1016/j.molliq.2019.111679.
  • Awual, M. R.; Hasan, M. M.; Iqbal, J.; Islam, M. A.; Islam, A.; Khandaker, S.; Asiri, A. M.; Rahman, M. M. Ligand Based Sustainable Composite Material for Sensitive Nickel (II) Capturing in Aqueous Media. J. Environ. Chem. Eng. 2020, 8, 103591. DOI: 10.1016/j.jece.2019.103591.
  • Khan, K.; Lu, Y.; Khan, H.; Ishtiaq, M.; Khan, S.; Waqas, M.; Wei, L.; Wang, T. Heavy Metals in Agricultural Soils and Crops and Their Health Risks in Swat District, Northern Pakistan. Food Chem. Toxicol. 2013, 58, 449–458. DOI: 10.1016/j.fct.2013.05.014.
  • Orisakwe, O. E.; Nduka, J. K.; Amadi, C. N.; Dike, D. O.; Bede, O. Heavy Metals Health Risk Assessment for Population via Consumption of Food Crops and Fruits in Owerri, South Eastern, Nigeria. Chem. Cent. J. 2012, 6, 1–7. DOI: 10.1186/1752-153X-6-77.
  • Massoud, R.; Hadiani, M. R.; Hamzehlou, P.; Khosravi-Darani, K. Bioremediation of Heavy Metals in Food Industry: Application of Saccharomyces cerevisiae. Electron. J. Biotechnol. 2019, 37, 56–60. DOI: 10.1016/j.ejbt.2018.11.003.
  • Arshad, M. N.; Sheikh, T. A.; Rahman, M. M.; Asiri, A. M.; Marwani, H. M.; Awual, M. R. Fabrication of Cadmium Ionic Sensor Based on (E)-4-Methyl-N′-(1-(Pyridin-2-yl) Ethylidene) Benzenesulfonohydrazide (MPEBSH) by Electrochemical Approach. J. Organomet. Chem. 2017, 827, 49–55. DOI: 10.1016/j.jorganchem.2016.11.009.
  • Awual, M. R. A Novel Facial Composite Adsorbent for Enhanced Copper(II) Detection and Removal from Wastewater. J. Chem. Eng. 2015, 266, 368–375. DOI: 10.1016/j.cej.2014.12.094.
  • Ajiboye, T. O.; Oyewo, O. A.; Onwudiwe, D. C. Simultaneous Removal of Organics and Heavy Metals from Industrial Wastewater: A Review. Chemosphere 2021, 262, 128379. DOI: 10.1016/j.chemosphere.2020.128379.
  • Awual, M. R. Ring Size Dependent Crown Ether Based Mesoporous Adsorbent for High Cesium Adsorption from Wastewater. J. Chem. Eng. 2016, 303, 539–546. DOI: 10.1016/j.cej.2016.06.040.
  • Awual, M. R.; Hasan, M. M.; Asiri, A. M.; Rahman, M. M. Cleaning the Arsenic (V) contaminated Water for Safe-Guarding the Public Health Using Novel Composite Material. Compos. B. Eng. 2019, 171, 294–301. DOI: 10.1016/j.compositesb.2019.05.078.
  • Awual, M. R. Assessing of Lead (III) Capturing from Contaminated Wastewater Using Ligand Doped Conjugate Adsorbent. Chem. Eng. J. 2016, 289, 65–73. DOI: 10.1016/j.cej.2015.12.078.
  • Elwakeel, K. Z.; Elgarahy, A. M.; Khan, Z. A.; Almughamisi, M. S.; Al-Bogami, A. S. Perspectives regarding Metal/Mineral-Incorporating Materials for Water Purification: With Special Focus on Cr (vi) Removal. Mater. Adv. 2020, 1, 1546–1574. DOI: 10.1039/D0MA00153H.
  • Awual, M. R.; Hasan, M. M.; Islam, A.; Rahman, M. M.; Asiri, A. M.; Khaleque, M. A.; Sheikh, M. C. Introducing an Amine Functionalized Novel Conjugate Material for Toxic Nitrite Detection and Adsorption from Wastewater. J. Clean. Prod. 2019, 228, 778–785. DOI: 10.1016/j.jclepro.2019.04.280.
  • Awual, M. R. Solid Phase Sensitive Palladium (II) Ions Detection and Recovery Using Ligand Based Efficient Conjugate Nanomaterials. Chem. Eng. J. 2016, 300, 264–272. DOI: 10.1016/j.cej.2016.04.071.
  • Awual, M. R. Novel Nanocomposite Materials for Efficient and Selective Mercury Ions Capturing from Wastewater. Chem. Eng. J. 2017, 307, 456–465. DOI: 10.1016/j.cej.2016.08.108.
  • Awual, M. R.; Islam, A.; Hasan, M. M.; Rahman, M. M.; Asiri, A. M.; Khaleque, M. A.; Sheikh, M. C. Introducing an Alternate Conjugated Material for Enhanced Lead (II) Capturing from Wastewater. J. Clean. Prod. 2019, 224, 920–929. DOI: 10.1016/j.jclepro.2019.03.241.
  • El-Korashy, S. A.; Elwakeel, K. Z.; Abd El-Hafeiz, A. Fabrication of Bentonite/Thiourea-Formaldehyde Composite Material for Pb (II), Mn (VII) and Cr (VI) Sorption: A Combined Basic Study and Industrial Application. J. Clean. Prod. 2016, 137, 40–50. DOI: 10.1016/j.jclepro.2016.07.073.
  • Elwakeel, K.; El-Bindary, A.; Kouta, E. Retention of Copper, Cadmium and Lead from Water by Na-Y-Zeolite Confined in Methyl Methacrylate Shell. J. Environ. Chem. Eng. 2017, 5, 3698–3710. DOI: 10.1016/j.jece.2017.06.049.
  • Elgarahy, A.; Elwakeel, K.; Mohammad, S.; Elshoubaky, G. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Clean. Eng. Technol. 2021, 4, 100209. DOI: 10.1016/j.clet.2021.100209.
  • Atia, A. A.; Donia, A. M.; ELwakeel, K. Z. Adsorption Behaviour of Non-Transition Metal Ions on a Synthetic Chelating Resin Bearing Iminoacetate Functions. Sep. Purif. Technol. 2005, 43, 43–48. DOI: 10.1016/j.seppur.2004.09.012.
  • Picard, C.; Fioramonti, J.; Francois, A.; Robinson, T.; Neant, F.; Matuchansky, C. Bifidobacteria as Probiotic Agents–Physiological Effects and Clinical Benefits. Aliment. Pharmacol. Ther. 2005, 22, 495–512. DOI: 10.1111/j.1365-2036.2005.02615.x.
  • Sánchez-Machado, D. I.; López-Cervantes, J.; Correa-Murrieta, M. A.; Sánchez-Duarte, R. G.; Cruz-Flores, P.; de la Mora-López, G. S. Chitosan. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S. M., Silva, A. S., Eds. Academic Press: United Kingdom, Elsevier; 2019; 485–493.
  • Elsanhoty, R. M.; Al-Turki, I. A.; Ramadan, M. F. Application of Lactic Acid Bacteria in Removing Heavy Metals and Aflatoxin B1 from Contaminated Water. Water Sci. Technol. 2016, 74, 625–638. DOI: 10.2166/wst.2016.255.
  • Yousefi Asli, M.; Khorshidian, N.; Mohammad Mortazavian, A.; Hosseini, H. A Review on the Impact of Herbal Extracts and Essential Oils on Viability of Probiotics in Fermented Milks. Curr. Nutr. Food Sci. 2017, 13, 6–15. DOI: 10.2174/1573401312666161017143415.
  • Yousefi, M.; Khorshidian, N.; Hosseini, H. The Ability of Probiotic Lactobacillus Strains in Removal of Benzo[a]Pyrene: A Response Surface Methodology Study. Probiotics Antimicrob. Proteins 2021, 14, 464–475. DOI: 10.1007/s12602-021-09810-7.
  • Halttunen, T.; Finell, M.; Salminen, S. Arsenic Removal by Native and Chemically Modified Lactic Acid Bacteria. Int. J. Food Microbiol. 2007, 120, 173–178. DOI: 10.1016/j.ijfoodmicro.2007.06.002.
  • Halttunen, T.; Salminen, S.; Tahvonen, R. Rapid Removal of Lead and Cadmium from Water by Specific Lactic Acid Bacteria. Int. J. Food Microbiol. 2007, 114, 30–35. DOI: 10.1016/j.ijfoodmicro.2006.10.040.
  • Chiocchetti, G. M.; Jadán-Piedra, C.; Monedero, V.; Zúñiga, M.; Vélez, D.; Devesa, V. Use of Lactic Acid Bacteria and Yeasts to Reduce Exposure to Chemical Food Contaminants and Toxicity. Crit. Rev. Food Sci. Nutr. 2019, 59, 1534–1545. DOI: 10.1080/10408398.2017.1421521.
  • Elwakeel, K. Z. Environmental Application of Chitosan Resins for the Treatment of Water and Wastewater: A Review. J. Dispers. Sci. Technol. 2010, 31, 273–288. DOI: 10.1080/01932690903167178.
  • Guibal, E. Interactions of Metal Ions with Chitosan-Based Sorbents: A Review. Sep. Purif. Technol. 2004, 38, 43–74. DOI: 10.1016/j.seppur.2003.10.004.
  • Zhang, L.; Zeng, Y.; Cheng, Z. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. J. Mol. Liq. 2016, 214, 175–191. DOI: 10.1016/j.molliq.2015.12.013.
  • Wang, J.; Zhuang, S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. DOI: 10.1080/10643389.2017.1421845.
  • Elwakeel, K. Z.; Aly, M. H.; El-Howety, M. A.; El-Fadaly, E.; Al-Said, A. Synthesis of Chitosan@ Activated Carbon Beads with Abundant Amino Groups for Capture of Cu (II) and Cd (II) from Aqueous Solutions. J. Polym. Environ. 2018, 26, 3590–3602. DOI: 10.1007/s10924-018-1243-2.
  • Ziarati, P.; Shirkhan, F.; Mostafidi, M.; Zahedi, M. T. An Overview of the Heavy Metal Contamination in Milk and Dairy Products. Acta Sci. Pharm. Sci. 2018, 2, 1–14.
  • Awual, M. R.; Khraisheh, M.; Alharthi, N. H.; Luqman, M.; Islam, A.; Karim, M. R.; Rahman, M. M.; Khaleque, M. A. Efficient Detection and Adsorption of Cadmium (II) Ions Using Innovative Nano-Composite Materials. Chem. Eng. J. 2018, 343, 118–127. DOI: 10.1016/j.cej.2018.02.116.
  • Benettayeb, A.; Morsli, A.; Elwakeel, K. Z.; Hamza, M. F.; Guibal, E. Recovery of Heavy Metal Ions Using Magnetic Glycine-Modified Chitosan—Application to Aqueous Solutions and Tailing Leachate. Appl. Sci. 2021, 11, 8377. DOI: 10.3390/app11188377.
  • Halttunen, T.; Kankaanpää, P.; Tahvonen, R.; Salminen, S.; Ouwehand, A. C. Cadmium Removal by Lactic Acid Bacteria. Biosci. Microflora 2003, 22, 93–97. DOI: 10.12938/bifidus1996.22.93.
  • Charpentier, T. V. J.; Neville, A.; Lanigan, J. L.; Barker, R.; Smith, M. J.; Richardson, T. Preparation of Magnetic Carboxymethylchitosan Nanoparticles for Adsorption of Heavy Metal Ions. ACS Omega 2016, 1, 77–83. DOI: 10.1021/acsomega.6b00035.
  • Chen, Y.; Zhang, B. C.; Sun, Y. H.; Zhang, J. G.; Sun, H. J.; Wei, Z. J. Physicochemical Properties and Adsorption of Cholesterol by Okra (Abelmoschus Esculentus) Powder. Food Funct. 2015, 6, 3728–3736. DOI: 10.1039/c5fo00600g.
  • Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of Heavy Metal Ion Adsorption on Chitosan/Sulfydryl-Functionalized Graphene Oxide Composites. J. Colloid Interface Sci. 2015, 448, 389–397. DOI: 10.1016/j.jcis.2015.02.039.
  • Kadirvelu, K.; Namasivayam, C. Agricutural by-Product as Metal Adsorbent: Sorption of Lead(II) from Aqueous Solution onto Coirpith Carbon. Environ. Technol. 2000, 21, 1091–1097. DOI: 10.1080/09593330.2000.9618995.
  • Halttunen, T.; Collado, M.; El‐Nezami, H.; Meriluoto, J.; Salminen, S. Combining Strains of Lactic Acid Bacteria May Reduce Their Toxin and Heavy Metal Removal Efficiency from Aqueous Solution. Lett. Appl. Microbiol. 2008, 46, 160–165. DOI: 10.1111/j.1472-765X.2007.02276.x.
  • Li, W.; Chen, Y.; Wang, T. Cadmium Biosorption by Lactic Acid Bacteria Weissella viridescens ZY-6. Food Control 2021, 123, 107747. DOI: 10.1016/j.foodcont.2020.107747.
  • Massoud, R.; Khosravi‐Darani, K.; Sharifan, A.; Asadi, G.; Zoghi, A. Lead and Cadmium Biosorption from Milk by Lactobacillus acidophilus ATCC 4356. Food Sci. Nutr. 2020, 8, 5284–5291. DOI: 10.1002/fsn3.1825.
  • Zhai, Q.; Guo, Y.; Tang, X.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Removal of Cadmium from Rice by Lactobacillus plantarum Fermentation. Food Control 2019, 96, 357–364. DOI: 10.1016/j.foodcont.2018.09.029.
  • Bai, J.; Yang, X.; Du, R.; Chen, Y.; Wang, S.; Qiu, R. Biosorption Mechanisms Involved in Immobilization of Soil Pb by Bacillus subtilis DBM in a Multi-Metal-Contaminated Soil. J. Environ. Sci. (China) 2014, 26, 2056–2064. DOI: 10.1016/j.jes.2014.07.015.
  • Li, X.; Li, D.; Yan, Z.; Ao, Y. Biosorption and Bioaccumulation Characteristics of Cadmium by Plant Growth-Promoting Rhizobacteria. RSC Adv. 2018, 8, 30902–30911. DOI: 10.1039/C8RA06270F.
  • Huang, H.; Jia, Q.; Jing, W.; Dahms, H. U.; Wang, L. Screening Strains for Microbial Biosorption Technology of Cadmium. Chemosphere 2020, 251, 126428. DOI: 10.1016/j.chemosphere.2020.126428.
  • Yuan, W.; Cheng, J.; Huang, H.; Xiong, S.; Gao, J.; Zhang, J.; Feng, S. Optimization of Cadmium Biosorption by Shewanella putrefaciens Using a Box-Behnken Design. Ecotoxicol. Environ. Saf. 2019, 175, 138–147. DOI: 10.1016/j.ecoenv.2019.03.057.
  • Alaswad, S. O.; Lakshmi, K. B.; Sudha, P.; Gomathi, T.; Arunachalam, P. Toxic Heavy Metal Cadmium Removal Using Chitosan and Polypropylene Based Fiber Composite. Int. J. Biol. Macromol. 2020, 164, 1809–1824. DOI: 10.1016/j.ijbiomac.2020.07.252.
  • Alyasi, H.; Mackey, H. R.; McKay, G. Removal of Cadmium from Waters by Adsorption Using Nanochitosan. Energy Environ. 2020, 31, 517–534. DOI: 10.1177/0958305X19876191.
  • Vilela, P. B.; Matias, C. A.; Dalalibera, A.; Becegato, V. A.; Paulino, A. T. Polyacrylic Acid-Based and Chitosan-Based Hydrogels for Adsorption of Cadmium: Equilibrium Isotherm, Kinetic and Thermodynamic Studies. J. Environ. Chem. Eng. 2019, 7, 103327. DOI: 10.1016/j.jece.2019.103327.
  • Alabbad, E. A. Estimation the Sorption Capacity of Chemically Modified Chitosan toward Cadmium Ion in Wastewater Effluents. Orient. J. Chem. 2019, 35, 757–765. DOI: 10.13005/ojc/350236.
  • Rozman, U.; Kalčíková, G.; Marolt, G.; Skalar, T.; Gotvajn, A. Ž. Potential of Waste Fungal Biomass for Lead and Cadmium Removal: Characterization, Biosorption Kinetic and Isotherm Studies. Environ. Technol. Innov. 2020, 18, 100742. DOI: 10.1016/j.eti.2020.100742.
  • Ma, X.; Cui, W.; Yang, L.; Yang, Y.; Chen, H.; Wang, K. Efficient Biosorption of Lead (II) and Cadmium (II) Ions from Aqueous Solutions by Functionalized Cell with Intracellular CaCO3 Mineral Scaffolds. Bioresour Technol. 2015, 185, 70–78. DOI: 10.1016/j.biortech.2015.02.074.
  • Han, R.; Li, H.; Li, Y.; Zhang, J.; Xiao, H.; Shi, J. Biosorption of Copper and Lead Ions by Waste Beer Yeast. J. Hazard. Mater. 2006, 137, 1569–1576. DOI: 10.1016/j.jhazmat.2006.04.045.
  • Hussain, M. S.; Musharraf, S. G.; Bhanger, M. I.; Malik, M. I. Salicylaldehyde Derivative of Nano-Chitosan as an Efficient Adsorbent for Lead (II), Copper (II), and Cadmium (II) Ions. Int. J. Biol. Macromol. 2020, 147, 643–652. DOI: 10.1016/j.ijbiomac.2020.01.091.
  • Alakhras, F. Kinetics and Diffusion Analysis for the Removal of Cadmium Ion from Aqueous Solutions Using Chitosan-Iso-Vanillin Sorbent. Russ. J. Phys. Chem. A 2019, 93, 2628–2634. DOI: 10.1134/S0036024419130041.
  • Vishan, I.; Saha, B.; Sivaprakasam, S.; Kalamdhad, A. Evaluation of Cd (II) Biosorption in Aqueous Solution by Using Lyophilized Biomass of Novel Bacterial Strain Bacillus badius AK: Biosorption Kinetics, Thermodynamics and Mechanism. Environ. Technol. Innov. 2019, 14, 100323. DOI: 10.1016/j.eti.2019.100323.
  • Munjur, H. M.; Hasan, M. N.; Awual, M. R.; Islam, M. M.; Shenashen, M.; Iqbal, J. Biodegradable Natural Carbohydrate Polymeric Sustainable Adsorbents for Efficient Toxic Dye Removal from Wastewater. J. Mol. Liq. 2020, 319, 114356. DOI: 10.1016/j.molliq.2020.114356.
  • Devatha, C.; Shivani, S. Novel Application of Maghemite Nanoparticles Coated Bacteria for the Removal of Cadmium from Aqueous Solution. J. Environ. Manage. 2020, 258, 110038. DOI: 10.1016/j.jenvman.2019.110038.
  • Pakdel, M.; Soleimanian-Zad, S.; Akbari-Alavijeh, S. Screening of Lactic Acid Bacteria to Detect Potent Biosorbents of Lead and Cadmium. Food Control. 2019, 100, 144–150. DOI: 10.1016/j.foodcont.2018.12.044.
  • Chen, L.; Wu, P.; Chen, M.; Lai, X.; Ahmed, Z.; Zhu, N.; Dang, Z.; Bi, Y.; Liu, T. Preparation and Characterization of the Eco-Friendly Chitosan/Vermiculite Biocomposite with Excellent Removal Capacity for Cadmium and Lead. Appl. Clay Sci. 2018, 159, 74–82. DOI: 10.1016/j.clay.2017.12.050.
  • Farhan, S. N.; Khadom, A. A. Biosorption of Heavy Metals from Aqueous Solutions by Saccharomyces Cerevisiae. Int. J. Ind. Chem. 2015, 6, 119–130. DOI: 10.1007/s40090-015-0038-8.
  • Liu, Y.; Ting, L.; He, Z.; Li, T.; t.; Hui, W.; Hu, X.; Guo, Y.; Yuan, H. Biosorption of Copper (II) from Aqueous Solution by Bacillus subtilis Cells Immobilized into Chitosan Beads. Nonferrous Met. Soc. China 2013, 23, 1804–1814. DOI: 10.1016/S1003-6326(13)62664-3.
  • Wang, T.; Sun, H. Biosorption of Heavy Metals from Aqueous Solution by UV-Mutant Bacillus subtilis. Environ. Sci. Pollut. Res. Int. 2013, 20, 7450–7463. DOI: 10.1007/s11356-013-1767-x.
  • Vianna, L.; Andrade, M.; Nicoli, J. R. Screening of Waste Biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus Fermentations for Removal of Cu, Zn and Cd by Biosorption. World J. Microbiol. Biotechnol. 2000, 16, 437–440. DOI: 10.1023/A:1008953922144.
  • Madala, S.; Nadavala, S. K.; Vudagandla, S.; Boddu, V. M.; Abburi, K. Equilibrium, Kinetics and Thermodynamics of Cadmium (II) Biosorption on to Composite Chitosan Biosorbent. Arab. J. Chem. 2017, 10, S1883–S1893. DOI: 10.1016/j.arabjc.2013.07.017.
  • Iram, S.; Shabbir, R.; Zafar, H.; Javaid, M. Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arab. J. Sci. Eng. 2015, 40, 1867–1873. DOI: 10.1007/s13369-015-1702-1.
  • Hansda, A., Kumar, V. Biosorption of Copper by Bacterial Adsorbents: A Review. Res. J. Environ. Toxicol. 2015, 9, 45–58. DOI: 10.3923/rjet.2015.45.58.
  • Chi, Y.; Huang, Y.; Wang, J.; Chen, X.; Chu, S.; Hayat, K.; Xu, Z.; Xu, H.; Zhou, P.; Zhang, D. Two Plant Growth Promoting Bacterial Bacillus Strains Possess Different Mechanisms in Adsorption and Resistance to Cadmium. Sci. Total Environ. 2020, 741, 140422. DOI: 10.1016/j.scitotenv.2020.140422.
  • Arivalagan, P.; Singaraj, D.; Haridass, V.; Kaliannan, T. Removal of Cadmium from Aqueous Solution by Batch Studies Using Bacillus cereus. Ecol. Eng. 2014, 71, 728–735. DOI: 10.1016/j.ecoleng.2014.08.005.
  • Elwakeel, K.; El-Bindary, A.; Kouta, E.; Guibal, E. Functionalization of Polyacrylonitrile/Na-Y-Zeolite Composite with Amidoxime Groups for the Sorption of Cu (II), Cd (II) and Pb (II) Metal Ions. Chem. Eng. J. 2018, 332, 727–736. DOI: 10.1016/j.cej.2017.09.091.
  • Zhang, H.; Li, H.; Li, M.; Luo, D.; Chen, Y.; Chen, D.; Luo, H.; Chen, Z.; Li, K. Immobilizing Metal-Resistant Sulfate-Reducing Bacteria for Cadmium Removal from Aqueous Solutions. Pol. J. Environ. Stud. 2018, 27, 2851–2859. DOI: 10.15244/pjoes/83666.
  • Gatabi, J.; Sarrafi, Y.; Lakouraj, M. M.; Taghavi, M. Facile and Efficient Removal of Pb (II) from Aqueous Solution by Chitosan-Lead Ion Imprinted Polymer Network. Chemosphere 2020, 240, 124772. DOI: 10.1016/j.chemosphere.2019.124772.
  • Göksungur, Y.; Üren, S.; Güvenç, U. Biosorption of Cadmium and Lead Ions by Ethanol Treated Waste Baker’s Yeast Biomass. Bioresour. Technol. 2005, 96, 103–109. DOI: 10.1016/j.biortech.2003.04.002.
  • Naushad, M.; Alqadami, A. A.; Al-Kahtani, A. A.; Ahamad, T.; Awual, M. R.; Tatarchuk, T. Adsorption of Textile Dye Using Para-Aminobenzoic Acid Modified Activated Carbon: Kinetic and Equilibrium Studies. J. Mol. Liq. 2019, 296, 112075. DOI: 10.1016/j.molliq.2019.112075.
  • Awual, M. R.; Hasan, M. M.; Iqbal, J.; Islam, A.; Islam, M. A.; Asiri, A. M.; Rahman, M. M. Naked-Eye Lead (II) Capturing from Contaminated Water Using Innovative Large-Pore Facial Composite Materials. Microchem. J. 2020, 154, 104585. DOI: 10.1016/j.microc.2019.104585.
  • Ameen, F. A.; Hamdan, A. M.; El-Naggar, M. Y. Assessment of the Heavy Metal Bioremediation Efficiency of the Novel Marine Lactic Acid Bacterium, Lactobacillus plantarum MF042018. Sci. Rep. 2020, 10, 1–11. DOI: 10.1038/s41598-019-57210-3.
  • Sonawdekar, S.; Gupte, A. Biosorption of Copper (II) and Cadmium (II) by Bacillus cereus sys1 Isolated from Oil-Contaminated site. SN Appl. Sci. 2020, 2, 1–9. DOI: 10.1007/s42452-020-3062-z.
  • Kuczajowska-Zadrożna, M.; Filipkowska, U.; Jóźwiak, T. Adsorption of Cu (II) and Cd (II) from Aqueous Solutions by Chitosan Immobilized in Alginate Beads. J. Environ. Chem. Eng. 2020, 8, 103878. DOI: 10.1016/j.jece.2020.103878.
  • Wattanakornsiri, A.; Rattanawan, P.; Sanmueng, T.; Satchawan, S.; Jamnongkan, T.; Phuengphai, P. Local Fruit Peel Biosorbents for Lead (II) and Cadmium (II) Ion Removal from Waste Aqueous Solution: A Kinetic and Equilibrium Study. S. Afr. J. Chem. Eng. 2022, 42, 306–317. DOI: 10.1016/j.sajce.2022.09.008.
  • Olayinka, J. A.; Tope, B. I.; Olubunmi, O. O.; Omoniyi, M. S. Evaluation of Kinetics and Equilibrium Studies of Biosorption Potentials of Bamboo Stem Biomass for Removal of Lead (II) and Cadmium (II) Ions from Aqueous Solution. Afr. J. Pure Appl. Chem. 2020, 14, 24–41. DOI: 10.5897/AJPAC2019.081.
  • Qasemi, M.; Zarei, A.; Afsharnia, M.; Salehi, R.; Allahdadi, M.; Farhang, M. Data on Cadmium Removal from Synthetic Aqueous Solution Using Garbage Ash. Data Brief 2018, 20, 1115–1123. DOI: 10.1016/j.dib.2018.08.163.
  • Kokkinos, E.; Soukakos, K.; Kostoglou, M.; Mitrakas, M. Cadmium, Mercury, and Nickel Adsorption by Tetravalent Manganese Feroxyhyte: Selectivity, Kinetic Modeling, and Thermodynamic Study. Environ. Sci. Pollut. Res. Int. 2018, 25, 12263–12273. DOI: 10.1007/s11356-017-9738-2.
  • Guo, S.; Zhang, F.; Li, D.; Jiao, P. Highly Efficient and Selective Removal of Cadmium from Aqueous Solutions Based on Magnetic Graphitic Carbon Nitride Materials with Molecularly Imprinted Polymers. J. Mol. Struct. 2020, 1221, 128887. DOI: 10.1016/j.molstruc.2020.128887.
  • Shami, R. B.; Shojaei, V.; Khoshdast, H. Efficient Cadmium Removal from Aqueous Solutions Using a Sample Coal Waste Activated by Rhamnolipid Biosurfactant. J. Environ. Manage. 2019, 231, 1182–1192. DOI: 10.1016/j.jenvman.2018.03.126.
  • Wang, H.; Huang, T.; Tu, Z.; Ruan, C.; Lin, D. The Adsorption of Lead (II) Ions by Dynamic High Pressure Micro-Fluidization Treated Insoluble Soybean Dietary Fiber. J. Food Sci. Technol. 2016, 53, 2532–2539. DOI: 10.1007/s13197-016-2203-2.
  • Lian, C.; Wang, G.; Lv, W.; Sun, Z.; Zheng, S. Effect of Calcination Temperature on the Structure of Chitosan-Modified Montmorillonites and Their Adsorption of Aflatoxin B 1. Clays Clay Miner. 2019, 67, 357–366. DOI: 10.1007/s42860-019-00042-z.
  • Le, B.; Yang, S. H. Biosorption of Cadmium by Potential Probiotic Pediococcus pentosaceus Using in Vitro Digestion Model. Biotechnol. Appl. Biochem. 2019, 66, 673–680. DOI: 10.1002/bab.1783.
  • Hernandez-Mendoza, A.; Garcia, H.; Steele, J. Screening of Lactobacillus casei Strains for Their Ability to Bind Aflatoxin B1. Food Chem Toxicol 2009, 47, 1064–1068. DOI: 10.1016/j.fct.2009.01.042.
  • Begley, M.; Gahan, C. G.; Hill, C. The Interaction between Bacteria and Bile. FEMS Microbiol. Rev. 2005, 29, 625–651. DOI: 10.1016/j.femsre.2004.09.003.
  • Patel, A.; Sv, A.; Shah, N.; Verma, K. Lactic Acid Bacteria as Metal Quenchers to Improve Food Safety and Quality. AgroLife Sci. J. 2017, 6, 146–154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.