Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 4
404
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenotoxicity: a danger to the future life

, , , ORCID Icon & ORCID Icon
Pages 382-411 | Received 10 Oct 2022, Accepted 21 Feb 2023, Published online: 20 Mar 2023

References

  • Quintero-Ronderos, P.; Montoya-Ortiz, G. Epigenetics and Autoimmune Diseases. Autoimm. Dis. 2012, 2012, 593720.
  • Aristizabal, M.; Anreiter, I.; Halldorsdottir, T.; Odgers, C.; McDade, T.; Goldenberg, A.; Mostafavi, S.; Kobor, M.; Binder, E.; Sokolowski, M.; O’Donnell, K. Biological Embedding of Experience: A Primer on Epigenetics. Proceedings National Academy Sci. 2019, 117, 201820838.
  • Mirbahai, L.; Chipman, J. K. Epigenetic Memory of Environmental Organisms: A Reflection of Lifetime Stressor Exposures. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2014, 764–765, 10–17.
  • Bakulski, K. M.; Fallin, M. D. Epigenetic Epidemiology: Promises for Public Health Research. Environ. Mol. Mutagen. 2014, 55, 171–183.
  • Hodjat, M.; Rezvanfar, M. A.; Abdollahi, M. A Systematic Review on the Role of Environmental Toxicants in Stem Cells Aging. Food Chemical Toxicol. Intern. J. Pub. British Industrial Biol. Res. Assoc. 2015, 86, 298–308. DOI: 10.1016/j.fct.2015.11.002.
  • Calabrese, E. J.; Agathokleous, E.; Kapoor, R.; Dhawan, G.; Calabrese, V. Stem Cells and Hormesis. Current Opinion Toxicol. 2022, 30, 100340.
  • Agathokleous, E.; Guedes, R. N. C.; Calabrese, E. J.; Fotopoulos, V.; Azevedo, R. A. Transgenerational Hormesis: What Do Parents Sacrifice for Their Offspring? Current Opinion. Environ. Sci. Health. 2022, 29, 100380. DOI: 10.1016/j.coesh.2022.100380.
  • Ladd-Acosta, C.; Fallin, M. D. The Role of Epigenetics in Genetic and Environmental Epidemiology. Epigenomics 2016, 8, 271–283. DOI: 10.2217/epi.15.102.
  • Hodjat, M.; Rahmani, S.; Khan, F.; Niaz, K.; Navaei-Nigjeh, M.; Mohammadi Nejad, S.; Abdollahi, M. Environmental Toxicants, Incidence of Degenerative Diseases, and Therapies from the Epigenetic Point of View. Arch. Toxicol. 2017, 91, (2577–2597. DOI: 10.1007/s00204-017-1979-9.
  • Tran, N. Q. V.; Miyake, K. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int. J. Genomics 2017, 2017, 1–23. DOI: 10.1155/2017/7526592.
  • Bisserier, M.; Janostiak, R.; Lezoualc’h, F.; Hadri, L. Targeting Epigenetic Mechanisms as an Emerging Therapeutic Strategy in Pulmonary Hypertension Disease. Vascular Biol. (Bristol, England) 2020, 2, R17–r34. DOI: 10.1530/VB-19-0030.
  • Zhang, Z. M.; Lu, R.; Wang, P.; Yu, Y.; Chen, D.; Gao, L.; Liu, S.; Ji, D.; Rothbart, S. B.; Wang, Y.; et al. Structural Basis for Dnmt3a-Mediated De Novo DNA Methylation. Nature 2018, 554, 387–391. DOI: 10.1038/nature25477.
  • Alaskhar Alhamwe, B.; Khalaila, R.; Wolf, J.; von Bülow, V.; Harb, H.; Alhamdan, F.; Hii, C. S.; Prescott, S. L.; Ferrante, A.; Renz, H.; et al. Histone Modifications and Their Role in Epigenetics of Atopy and Allergic Diseases. Allergy Asthma Clinical Immunol. Official J. Canadian Soci. Allergy Clinical Immunol. 2018, 14, 39.
  • Healy, S.; Khan, P.; He, S.; Davie, J. R. Histone H3 Phosphorylation, Immediate-Early Gene Expression, and the Nucleosomal Response: A Historical Perspective. Biochem. Cell Biol. (Biochimie et Biologie Cellulaire). 2012, 90, 39–54.
  • Thiagalingam, S. Epigenetic Memory in Development and Disease: Unraveling the Mechanism. Biochim. Biophys. Acta. Rev. Cancer. 2020, 1873, 188349.
  • Cheung, P.; Lau, P. Epigenetic Regulation by Histone Methylation and Histone Variants. Mol. Endocrinol. 2005, 19, 563–573.
  • Ling, C.; Rönn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. DOI: 10.1016/j.cmet.2019.03.009.
  • Husmann, D.; Gozani, O. Histone Lysine Methyltransferases in Biology and Disease. Nat. Struct. Mol. Biol. 2019, 26, 880–889. DOI: 10.1038/s41594-019-0298-7.
  • Sun, H.; Kennedy, P. J.; Nestler, E. J. Epigenetics of the Depressed Brain: Role of Histone Acetylation and Methylation. Neuropsychopharmacol. 2013, 38, 124–137. DOI: 10.1038/npp.2012.73.
  • Giaimo, B. D.; Ferrante, F.; Herchenröther, A.; Hake, S. B.; Borggrefe, T. The Histone Variant H2a.Z in Gene Regulation. Epigenetic. Chromatin. 2019, 12, 37. DOI: 10.1186/s13072-019-0274-9.
  • Armache, A.; Yang, S.; Martínez de Paz, A.; Robbins, L. E.; Durmaz, C.; Cheong, J. Q.; Ravishankar, A.; Daman, A. W.; Ahimovic, D. J.; Klevorn, T.; et al. Histone H3.3 Phosphorylation Amplifies Stimulation-Induced Transcription. Nature 2020, 583, 852–857. DOI: 10.1038/s41586-020-2533-0.
  • Rossetto, D.; Avvakumov, N.; Côté, J. Histone Phosphorylation: A Chromatin Modification Involved in Diverse Nuclear Events. Epigenetics 2012, 7, 1098–1108. DOI: 10.4161/epi.21975.
  • Kriegs, J. O.; Churakov, G.; Jurka, J.; Brosius, J.; Schmitz, J. Evolutionary History of 7sl Rna-Derived Sines in Supraprimates. Trends Genet. 2007, 23, 158–161. DOI: 10.1016/j.tig.2007.02.002.
  • Rota, F.; Conti, A.; Campo, L.; Favero, C.; Cantone, L.; Motta, V.; Polledri, E.; Mercadante, R.; Dieci, G.; Bollati, V.; Fustinoni, S. Epigenetic and Transcriptional Modifications in Repetitive Elements in Petrol Station Workers Exposed to Benzene and Mtbe. IJERPH. 2018, 15, (735. DOI: 10.3390/ijerph15040735.
  • Baccarelli, A.; Bollati, V. Epigenetics and Environmental Chemicals. Current Opin. Pediat. 2009, 21, (243–251. DOI: 10.1097/MOP.0b013e32832925cc.
  • Yuan, Q.; Zhang, H.; Pan, Z.; Ling, X.; Wu, M.; Gui, Z.; Chen, J.; Peng, J.; Liu, Z.; Tan, Q.; et al. Regulatory Loop between Lncrna Fas-As1 and Dnmt3b Controls Fas Expression in Hydroquinone-Treated Tk6 Cells and Benzene-Exposed Workers. Environ. Pollut. 2020, 261, 114147. DOI: 10.1016/j.envpol.2020.114147.
  • Onuzulu, C. D.; Rotimi, O. A.; Rotimi, S. O. Epigenetic Modifications Associated with in Utero Exposure to Endocrine Disrupting Chemicals Bpa, Ddt and Pb. Rev. Environ. Health. 2019, 34, 309–325. DOI: 10.1515/reveh-2018-0059.
  • Shankar, A.; Teppala, S. Relationship between Urinary Bisphenol a Levels and Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2011, 96, 3822–3826. DOI: 10.1210/jc.2011-1682.
  • Huang, W.; Zhao, C.; Zhong, H.; Zhang, S.; Xia, Y.; Cai, Z. Bisphenol S Induced Epigenetic and Transcriptional Changes in Human Breast Cancer Cell Line Mcf-7. Environ. Poll. (Barking, Essex: 1987) 2019, 246, 697–703. DOI: 10.1016/j.envpol.2018.12.084.
  • Rahmani, S.; Pour Khalili, N.; Khan, F.; Hassani, S.; Ghafour-Boroujerdi, E.; Abdollahi, M. Bisphenol A: What Lies beneath Its Induced Diabetes and the Epigenetic Modulation? Life Sci. 2018, 214, 136–144. DOI: 10.1016/j.lfs.2018.10.044.
  • Lai, C.; Wu, F.; Wang, Y.; Wang, W.; Li, Y.; Zhang, G.; Gao, J.; Zhu, Z.; Yuan, J.; Yang, J.; Zhang, W. Specific Epigenetic Microenvironment and the Regulation of Tumor-Related Gene Expression by Trichloroethylene in Human Hepatocytes. Ecotoxicol. Environ. Safety. 2021, 208, 111453. DOI: 10.1016/j.ecoenv.2020.111453.
  • Ahmed, F.; Sarsenbayeva, A.; Katsogiannos, P.; Aguer, C.; Pereira, M. J. The Effects of Bisphenol A and Bisphenol S on Adipokine Expression and Glucose Metabolism in Human Adipose Tissue. Toxicology 2020, 445, 152600. DOI: 10.1016/j.tox.2020.152600.
  • Nassiri Koopaei, N.; Abdollahi, M. Health Risks Associated with the Pharmaceuticals in Wastewater. Daru 2017, 25, (1–9.
  • Zeng, Z.; Huo, X.; Zhang, Y.; Hylkema, M. N.; Wu, Y.; Xu, X. Differential DNA Methylation in Newborns with Maternal Exposure to Heavy Metals from an E-Waste Recycling Area. Environ. Res. 2019, 171, 536–545. DOI: 10.1016/j.envres.2019.01.007.
  • Yu, X.; Zhao, B.; Su, Y.; Zhang, Y.; Chen, J.; Wu, W.; Cheng, Q.; Guo, X.; Zhao, Z.; Ke, X.; et al. Association of Prenatal Organochlorine Pesticide-Dichlorodiphenyltrichloroethane Exposure with Fetal Genome-Wide DNA Methylation. Life Sci. 2018, 200, 81–86. DOI: 10.1016/j.lfs.2018.03.030.
  • Nilsson, E.; Klukovich, R.; Sadler-Riggleman, I.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M. K. Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Ovarian Pathology and Granulosa Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Polycystic Ovarian Syndrome and Primary Ovarian Insufiency. Epigenetics 2018, 13, 875–895. DOI: 10.1080/15592294.2018.1521223.
  • Mostafalou, S.; Abdollahi, M. Pesticides and Human Chronic Diseases: Evidences, Mechanisms, and Perspectives. Toxicol. Appl. Pharmacol. 2013, 268, 157–177. DOI: 10.1016/j.taap.2013.01.025.
  • Goyal, T.; Mitra, P.; Singh, P.; Ghosh, R.; Sharma, S.; Sharma, P. Association of Microrna Expression with Changes in Immune Markers in Workers with Cadmium Exposure. Chemosphere 2021, 274, 129615. DOI: 10.1016/j.chemosphere.2021.129615.
  • Zhou, Z.; Huang, Z.; Chen, B.; Lu, Q.; Cao, L.; Chen, W. Lncrna-Enst00000446135 Is a Novel Biomarker of Cadmium Toxicity in 16hbe Cells, Rats, and Cd-Exposed Workers and Regulates DNA Damage and Repair. Toxicol. Res. 2021, 9, 823–834. DOI: 10.1093/toxres/tfaa088.
  • Anyanwu, B. O.; Orisakwe, O. E. Current Mechanistic Perspectives on Male Reproductive Toxicity Induced by Heavy Metals. J. Environ. Sci. Health Part C, Toxicol. Carcinogenesis 2020, 38, 204–244. DOI: 10.1080/26896583.2020.1782116.
  • Wallace, D. R.; Taalab, Y. M.; Heinze, S.; Tariba Lovaković, B.; Pizent, A.; Renieri, E.; Tsatsakis, A.; Farooqi, A. A.; Javorac, D.; Andjelkovic, M.; et al. Toxic-Metal-Induced Alteration in Mirna Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020, 9, 901. DOI: 10.3390/cells9040901.
  • Saeidnia, S.; Abdollahi, M. Antioxidants: Friends or Foe in Prevention or Treatment of Cancer: The Debate of the Century. Toxicol Appl Pharmacol 2013, 271, 49–63. DOI: 10.1016/j.taap.2013.05.004.
  • Agathokleous, E.; Kitao, M.; Calabrese, E. J. Environmental Hormesis and Its Fundamental Biological Basis: Rewriting the History of Toxicology. Environ. Res. 2018, 165, 274–278. DOI: 10.1016/j.envres.2018.04.034.
  • Wang, Z.; Yang, C. Metal Carcinogen Exposure Induces Cancer Stem Cell-Like Property through Epigenetic Reprograming: A Novel Mechanism of Metal Carcinogenesis. Semin. Cancer Biol. 2019, 57, 95–104. DOI: 10.1016/j.semcancer.2019.01.002.
  • Gao, M.; Li, C.; Xu, M.; Liu, Y.; Liu, S. Lncrna Uca1 Attenuates Autophagy-Dependent Cell Death through Blocking Autophagic Flux under Arsenic Stress. Toxicol. Lett. 2018, 284, 195–204. DOI: 10.1016/j.toxlet.2017.12.009.
  • Khan, F.; Hodjat, M.; Rahimifard, M.; Nigjeh, M. N.; Azizi, M.; Baeeri, M.; Bayrami, Z.; Gholami, M.; Hassani, S.; Abdollahi, M. Assessment of Arsenic-Induced Modifications in the DNA Methylation of Insulin-Related Genes in Rat Pancreatic Islets. Ecotoxicol. Environ. Safety 2020, 201, 110802. DOI: 10.1016/j.ecoenv.2020.110802.
  • Ramirez, T.; Brocher, J.; Stopper, H.; Hock, R. Sodium Arsenite Modulates Histone Acetylation, Histone Deacetylase Activity and Hmgn Protein Dynamics in Human Cells. Chromosoma 2008, 117, 147–157. DOI: 10.1007/s00412-007-0133-5.
  • Chen, B.; Xiong, J.; Ding, J.-H.; Yuan, B.-F.; Feng, Y.-Q. Analysis of the Effects of Cr(Vi) Exposure on Mrna Modifications. Chem. Res. Toxicol. 2019, 32, 2078–2085. DOI: 10.1021/acs.chemrestox.9b00249.
  • He, J.; Qian, X.; Carpenter, R.; Xu, Q.; Wang, L.; Qi, Y.; Wang, Z.-X.; Liu, L.-Z.; Jiang, B.-H. Repression of Mir-143 Mediates Cr (Vi)–Induced Tumor Angiogenesis via Igf-Ir/Irs1/Erk/Il-8 Pathway. Toxicol Sci. 2013, 134, 26–38. DOI: 10.1093/toxsci/kft101.
  • Chen, Q. Y.; Murphy, A.; Sun, H.; Costa, M. Molecular and Epigenetic Mechanisms of Cr(Vi)-Induced Carcinogenesis. Toxicol Appl Pharmacol 2019, 377, 114636. DOI: 10.1016/j.taap.2019.114636.
  • Pratheeshkumar, P.; Son, Y. O.; Divya, S. P.; Turcios, L.; Roy, R. V.; Hitron, J. A.; Wang, L.; Kim, D.; Dai, J.; Asha, P.; et al. Hexavalent Chromium Induces Malignant Transformation of Human Lung Bronchial Epithelial Cells via Ros-Dependent Activation of Mir-21-Pdcd4 Signaling. Oncotarget 2016, 7, 51193–51210.
  • Ren, X.; Xia, B.; Chen, Z.; Chen, X.; Wu, D.; Lu, W.; Luo, N.; Zhou, L.; Liu, W.; Yang, X.; Liu, J. Short-Term and Long-Term Exposure to Hexavalent Chromium Alters 53bp1 via H3k18ac and H3k27ac. Chemosphere 2019, 229, 284–294. DOI: 10.1016/j.chemosphere.2019.04.113.
  • Wang, T.; Zhang, J.; Xu, Y. Epigenetic Basis of Lead-Induced Neurological Disorders. Int. J. Environ. Res. Public Health. 2020, 17, (13.
  • Khalid, M.; Abdollahi, M. Epigenetic Modifications Associated with Pathophysiological Effects of Lead Exposure. J. Environ. Science Health, Part C 2019, 37, 235–287. DOI: 10.1080/10590501.2019.1640581.
  • Engström, K.; Rydbeck, F.; Kippler, M.; Wojdacz, T. K.; Arifeen, S.; Vahter, M.; Broberg, K. Prenatal Lead Exposure Is Associated with Decreased Cord Blood DNA Methylation of the Glycoprotein Vi Gene Involved in Platelet Activation and Thrombus Formation. Environ. Epigenet. 2015, 1, dvv007.
  • Who Guideline for the Clinical Management of Exposure to Lead. Available from: https://apps.who.int/iris/rest/bitstreams/1384975/retrieve.
  • Araújo, M.; Gomes, B. C.; Devóz, P. P.; Duarte, N.; Ribeiro, D. L.; Araújo, A.; Batista, B. L.; Antunes, L. M. G.; Barbosa, F.; Rodrigues, A. S.; et al. Association between Mir-148a and DNA Methylation Profile in Individuals Exposed to Lead (Pb). Front. Genet. 2021, 12, 49. (DOI: 10.3389/fgene.2021.620744.
  • Hernández-Coro, A.; Hernández, B. E.; Montes, S.; Martínez-Lazcano, J.; González Guevara, E.; Pérez-Severiano, F. Alterations in Gene Expression Due to Chronic Lead Exposure Induce Behavioral Changes. Neurosci. Biobehavior. Rev. 2021, 126, 361–367. DOI: 10.1016/j.neubiorev.2021.03.031.
  • Li, Y.-Y.; Chen, T.; Wan, Y.; Xu, S-q Lead Exposure in Pheochromocytoma Cells Induces Persistent Changes in Amyloid Precursor Protein Gene Methylation Patterns. Environ. Toxicol. 2012, 27, 495–502. DOI: 10.1002/tox.20666.
  • Liu, D.; Hui, Y.; Wang, J.; Ye, C.; Du, J. Basic Fibroblast Growth Factor Is Involved in Bisphenol S Induced Proliferation of Hemangioma Cells. 2020.
  • Bhan, A.; Hussain, I.; Ansari, K. I.; Bobzean, S. A.; Perrotti, L. I.; Mandal, S. S. Bisphenol-a and Diethylstilbestrol Exposure Induces the Expression of Breast Cancer Associated Long Noncoding Rna Hotair in Vitro and in Vivo. J. Steroid Biochem. Molecular Biol. 2014, 141, 160–170. DOI: 10.1016/j.jsbmb.2014.02.002.
  • Lombó, M.; Fernández-Díez, C.; González-Rojo, S.; Herráez, M. P. Genetic and Epigenetic Alterations Induced by Bisphenol A Exposure during Different Periods of Spermatogenesis: From Spermatozoa to the Progeny. Sci. Rep. 2019, 9, 18029. DOI: 10.1038/s41598-019-54368-8.
  • Alavian-Ghavanini, A.; Lin, P. I.; Lind, P. M.; Risén Rimfors, S.; Halin Lejonklou, M.; Dunder, L.; Tang, M.; Lindh, C.; Bornehag, C. G.; Rüegg, J. Prenatal Bisphenol a Exposure Is Linked to Epigenetic Changes in Glutamate Receptor Subunit Gene Grin2b in Female Rats and Humans. Sci. Rep. 2018, 8, (1),11315. DOI: 10.1038/s41598-018-29732-9.
  • Shi, M.; Sekulovski, N.; MacLean, J. A.; 2nd.; Hayashi, K. Prenatal Exposure to Bisphenol A Analogues on Male Reproductive Functions in Mice. Toxicol. Sci. Official J. Soci. Toxicol. 2018, 163, 620–631. (DOI: 10.1093/toxsci/kfy061.
  • Chen, A.; Dietrich, K. N.; Huo, X.; Ho, S. M. Developmental Neurotoxicants in E-Waste: An Emerging Health Concern. Environ. Health Perspect. 2011, 119, (431–438. DOI: 10.1289/ehp.1002452.
  • Ijomone, O. M.; Ijomone, O. K.; Iroegbu, J. D.; Ifenatuoha, C. W.; Olung, N. F.; Aschner, M. Epigenetic Influence of Environmentally Neurotoxic Metals. NeuroToxicol. 2020, 81, 51–65. DOI: 10.1016/j.neuro.2020.08.005.
  • Cheng, H.; Hu, P.; Wen, W.; Liu, L. Relative Mirna and Mrna Expression Involved in Arsenic Methylation. PLoS ONE 2018, 13, e0209014. DOI: 10.1371/journal.pone.0209014.
  • Culbreth, M.; Aschner, M. Methylmercury Epigenetics. Toxics 2019, 7, 56. DOI: 10.3390/toxics7040056.
  • Shukla, A.; Bunkar, N.; Kumar, R.; Bhargava, A.; Tiwari, R.; Chaudhury, K.; Goryacheva, I. Y.; Mishra, P. K. Air Pollution Associated Epigenetic Modifications: Transgenerational Inheritance and Underlying Molecular Mechanisms. Sci. Total Environ. 2019, 656, 760–777. DOI: 10.1016/j.scitotenv.2018.11.381.
  • Wang, M.; Zhao, J.; Wang, Y.; Mao, Y.; Zhao, X.; Huang, P.; Liu, Q.; Ma, Y.; Yao, Y.; Yang, Z.; et al. Genome-Wide DNA Methylation Analysis Reveals Significant Impact of Long-Term Ambient Air Pollution Exposure on Biological Functions Related to Mitochondria and Immune Response. Environ. Poll. (Barking, Essex: 1987) 2020, 264, 114707. DOI: 10.1016/j.envpol.2020.114707.
  • Tsamou, M.; Vrijens, K.; Madhloum, N.; Lefebvre, W.; Vanpoucke, C.; Nawrot, T. S. Air Pollution-Induced Placental Epigenetic Alterations in Early Life: A Candidate Mirna Approach. Epigenetics 2018, 13, 135–146. DOI: 10.1080/15592294.2016.1155012.
  • Kim, S.; Thapar, I.; Brooks, B. W. Epigenetic Changes by per- and Polyfluoroalkyl Substances (Pfas). Environ. Poll. (Barking, Essex: 1987) 2021, 279, 116929. DOI: 10.1016/j.envpol.2021.116929.
  • Alam, M. N.; Han, X.; Nan, B.; Liu, L.; Tian, M.; Shen, H.; Huang, Q. Chronic Low-Level Perfluorooctane Sulfonate (Pfos) Exposure Promotes Testicular Steroidogenesis through Enhanced Histone Acetylation. Environ. Pollut. 2021, 284, 117518. DOI: 10.1016/j.envpol.2021.117518.
  • Kim, S.; Stroski, K. M.; Killeen, G.; Smitherman, C.; Simcik, M. F.; Brooks, B. W. 8:8 Perfluoroalkyl Phosphinic Acid Affects Neurobehavioral Development, Thyroid Disruption, and DNA Methylation in Developing Zebrafish. Sci. Total Environ. 2020, 736, 139600. DOI: 10.1016/j.scitotenv.2020.139600.
  • Gedda, M. R.; Babele, P. K.; Zahra, K.; Madhukar, P. Epigenetic Aspects of Engineered Nanomaterials: Is the Collateral Damage Inevitable? Front. Bioeng. Biotechnol. 2019, 7, DOI: 10.3389/fbioe.2019.00228.
  • Stapleton, P. A.; Hathaway, Q. A.; Nichols, C. E.; Abukabda, A. B.; Pinti, M. V.; Shepherd, D. L.; McBride, C. R.; Yi, J.; Castranova, V. C.; Hollander, J. M.; Nurkiewicz, T. R. Maternal Engineered Nanomaterial Inhalation during Gestation Alters the Fetal Transcriptome. Part. Fibre Toxicol. 2018, 15, 3. DOI: 10.1186/s12989-017-0239-8.
  • Kunovac, A.; Hathaway, Q.; Pinti, M.; Goldsmith, W.; Durr, A.; Fink, G.; Nurkiewicz, T.; Hollander, J. Ros Promote Epigenetic Remodeling and Cardiac Dysfunction in Offspring following Maternal Engineered Nanomaterial (Enm) Exposure. Part. Fibre Toxicol. 2019, 16, DOI: 10.1186/s12989-019-0310-8.
  • Ruiz-Vera, T.; Ochoa-Martínez, Á. C.; Pruneda-Álvarez, L. G.; Domínguez-Cortinas, G.; Pérez-Maldonado, IN. Expression Levels of Circulating Micrornas-126, -155, and -145 in Mexican Women Exposed to Polycyclic Aromatic Hydrocarbons through Biomass Fuel Use. Environ. Mol. Mutagen. 2019, 60, (546–558. DOI: 10.1002/em.22273.
  • Pakzad Toochaei, S.; Ghasempouri, S. M.; Riyahi Bakhtiari, A.; Khodabandeh, S. Global DNA Methylation Changes in Rock Pigeon (Columba Livia) as a Sentinel Species Due to Polycyclic Aromatic Hydrocarbons Exposure in Tehran (Iran) as a Megacity. Environ. Sci. Pollut. Res. 2019, 26, 26090–26101. DOI: 10.1007/s11356-019-05642-9.
  • Huang, Y.; Lin, S.; Jin, L.; Wang, L.; Ren, A. Decreased Global DNA Hydroxymethylation in Neural Tube Defects: Association with Polycyclic Aromatic Hydrocarbons. Epigenetics 2019, 14, 1019–1029. DOI: 10.1080/15592294.2019.1629233.
  • Bhargava, A.; Kumari, R.; Khare, S.; Shandilya, R.; Gupta, P. K.; Tiwari, R.; Rahman, A.; Chaudhury, K.; Goryacheva, I. Y.; Mishra, P. K. Mapping the Mitochondrial Regulation of Epigenetic Modifications in Association with Carcinogenic and Noncarcinogenic Polycyclic Aromatic Hydrocarbon Exposure. Int. J. Toxicol. 2020, 39, 465–476. DOI: 10.1177/1091581820932875.
  • Huang, Y.; Lin, S.; Wang, C.; Pi, X.; Jin, L.; Li, Z.; Wang, L.; Ren, A. Neural Tube Defects and Zic4 Hypomethylation in Relation to Polycyclic Aromatic Hydrocarbon Exposure. Front. Cell Dev. Biol. 2020, 8, (1302. DOI: 10.3389/fcell.2020.582661.
  • Cediel Ulloa, A.; Gliga, A.; Love, T. M.; Pineda, D.; Mruzek, D. W.; Watson, G. E.; Davidson, P. W.; Shamlaye, C. F.; Strain, J. J.; Myers, G. J.; et al. Prenatal Methylmercury Exposure and DNA Methylation in Seven-Year-Old Children in the Seychelles Child Development Study. Environ. Int. 2021, 147, 106321. DOI: 10.1016/j.envint.2020.106321.
  • Khan, F.; Momtaz, S.; Abdollahi, M. The Relationship between Mercury Exposure and Epigenetic Alterations regarding Human Health, Risk Assessment and Diagnostic Strategies. J. Trace Elem. Med. Biol. 2019, 52, 37–47. DOI: 10.1016/j.jtemb.2018.11.006.
  • Zong, D.; Liu, X.; Li, J.; Ouyang, R.; Chen, P. The Role of Cigarette Smoke-Induced Epigenetic Alterations in Inflammation. Epigenetic. Chromatin 2019, 12, 65. DOI: 10.1186/s13072-019-0311-8.
  • Toraño, E. G.; García, M. G.; Fernández-Morera, J. L.; Niño-García, P.; Fernández, A. F. The Impact of External Factors on the Epigenome: In Utero and over Lifetime. Biomed Res. Int. 2016, 2016, 1–17. DOI: 10.1155/2016/2568635.
  • Yu, J.; Loh, X. J.; Luo, Y.; Ge, S.; Fan, X.; Ruan, J. Insights into the Epigenetic Effects of Nanomaterials on Cells. Biomater. Sci. 2019, 8,
  • Qi, C.; Xu, C. J.; Koppelman, G. H. The Role of Epigenetics in the Development of Childhood Asthma. Expert Rev. Clinical Immunol. 2019, 15, (1287–1302. DOI: 10.1080/1744666X.2020.1686977.
  • Mazzone, R.; Zwergel, C.; Artico, M.; Taurone, S.; Ralli, M.; Greco, A.; Mai, A. The Emerging Role of Epigenetics in Human Autoimmune Disorders. Clin. Epigenet. 2019, 11, 34. DOI: 10.1186/s13148-019-0632-2.
  • Surace, A. E. A.; Hedrich, C. M. The Role of Epigenetics in Autoimmune/Inflammatory Disease. Front Immunol. 2019, 10, 1525.
  • Nemtsova, M. V.; Zaletaev, D. V.; Bure, I. V.; Mikhaylenko, D. S.; Kuznetsova, E. B.; Alekseeva, E. A.; Beloukhova, M. I.; Deviatkin, A. A.; Lukashev, A. N.; Zamyatnin, A. A. Jr. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front. Genet. 2019, 10, 570. DOI: 10.3389/fgene.2019.00570.
  • Karouzakis, E.; Raza, K.; Kolling, C.; Buckley, C. D.; Gay, S.; Filer, A.; Ospelt, C. Analysis of Early Changes in DNA Methylation in Synovial Fibroblasts of Ra Patients before Diagnosis. Sci. Rep. 2018, 8, 7370. DOI: 10.1038/s41598-018-24240-2.
  • Pávková Goldbergová, M.; Lipková, J.; Fedorko, J.; Němec, P.; Gatterová, J.; Válková, L.; Ševčíková, J.; Vašků, A. Relationship of Epigenetic Variability of Mir-124 to Extracellular Matrix Remodelling and Age-Related Mmp-3 Expression in Rheumatoid Arthritis. GPB. 2018, 37, 703–710. DOI: 10.4149/gpb_2018024.
  • Barik, R. R.; Bhatt, L. K. Emerging Epigenetic Targets in Rheumatoid Arthritis. Rheumatol. Int. 2021, 41, 2047–2067. DOI: 10.1007/s00296-021-04951-y.
  • Ayeldeen, G.; Nassar, Y.; Ahmed, H.; Shaker, O.; Gheita, T. Possible Use of Mirnas-146a and -499 Expression and Their Polymorphisms as Diagnostic Markers for Rheumatoid Arthritis. Mol. Cell. Biochem. 2018, 449, 145–156.
  • Huynh, J. L.; Casaccia, P. Epigenetic Mechanisms in Multiple Sclerosis: Implications for Pathogenesis and Treatment. Lancet Neurol. 2013, 12, 195–206. DOI: 10.1016/S1474-4422(12)70309-5.
  • Miyazaki, Y.; Niino, M. Epigenetics in Multiple Sclerosis. Clin. Exp. Neuroimmunol. 2015, 6, 49–58. DOI: 10.1111/cen3.12271.
  • Comer, B. S.; Ba, M.; Singer, C. A.; Gerthoffer, W. T. Epigenetic Targets for Novel Therapies of Lung Diseases. Pharmacol. Therapeutic. 2015, 147, 91–110. DOI: 10.1016/j.pharmthera.2014.11.006.
  • den Dekker, H. T.; Burrows, K.; Felix, J. F.; Salas, L. A.; Nedeljkovic, I.; Yao, J.; Rifas-Shiman, S. L.; Ruiz-Arenas, C.; Amin, N.; Bustamante, M.; et al. Newborn DNA-Methylation, Childhood Lung Function, and the Risks of Asthma and Copd across the Life Course. Eur. Respir. J. 2019, 53, 1801795. DOI: 10.1183/13993003.01795-2018.
  • Zwinderman, M. R. H.; de Weerd, S.; Dekker, F. J. Targeting Hdac Complexes in Asthma and Copd. Epigenomes 2019, 3, 19. DOI: 10.3390/epigenomes3030019.
  • Kim, J.-D.; Lee, A.; Choi, J.; Park, Y.; Kang, H.; Chang, W.; Lee, M.-S.; Kim, J. Epigenetic Modulation as a Therapeutic Approach for Pulmonary Arterial Hypertension. Exp. Mol. Med. 2015, 47, e175–e175. DOI: 10.1038/emm.2015.45.
  • Peña, C. J.; Nestler, E. J. Progress in Epigenetics of Depression. Prog. Mol. Biol. Transl. Sci. 2018, 157, 41–66.
  • Berdenis van Berlekom, A.; Notman, N.; Sneeboer, M. A.; Snijders, G. J.; Houtepen, L. C.; Nispeling, D. M.; He, Y.; Dracheva, S.; Hol, E. M.; Kahn, R. S.; Psychiatric Donor Program of the Netherlands Brain Bank (NBB-PSY).; et al. DNA Methylation Differences in Cortical Grey and White Matter in Schizophrenia. Epigenomics 2021, 13, 1157–1169. DOI: 10.2217/epi-2021-0077.
  • Li, S.; Zong, L.; Hou, Y.; Zhang, W.; Zhou, L.; Yang, Q.; Wang, L.; Jiang, W.; Li, Q.; Huang, X.; et al. Altered DNA Methylation of the Aluy Subfamily in Schizophrenia and Bipolar Disorder. Epigenomics 2019, 11, 581–586. DOI: 10.2217/epi-2018-0139.
  • Liu, Y.; Chang, X.; Hahn, C.-G.; Gur, R. E.; Sleiman, P. A. M.; Hakonarson, H. Non-Coding Rna Dysregulation in the Amygdala Region of Schizophrenia Patients Contributes to the Pathogenesis of the Disease. Transl. Psychiatry. 2018, 8, 44. DOI: 10.1038/s41398-017-0030-5.
  • Fries, G. R.; Li, Q.; McAlpin, B.; Rein, T.; Walss-Bass, C.; Soares, J. C.; Quevedo, J. The Role of DNA Methylation in the Pathophysiology and Treatment of Bipolar Disorder. Neurosci. Biobehav. Rev. 2016, 68, 474–488. DOI: 10.1016/j.neubiorev.2016.06.010.
  • Bengesser, S. A.; Mörkl, S.; Painold, A.; Dalkner, N.; Birner, A.; Fellendorf, F. T.; Platzer, M.; Queissner, R.; Hamm, C.; Maget, A.; et al. Epigenetics of the Molecular Clock and Bacterial Diversity in Bipolar Disorder. Psychoneuroendocrinology 2019, 101, 160–166. DOI: 10.1016/j.psyneuen.2018.11.009.
  • Rao, J. S.; Keleshian, V. L.; Klein, S.; Rapoport, S. I. Epigenetic Modifications in Frontal Cortex from Alzheimer’s Disease and Bipolar Disorder Patients. Transl. Psychiatry. 2012, 2, e132. DOI: 10.1038/tp.2012.55.
  • Steiger, H.; Booij, L.; Kahan;McGregor, K.; Thaler, L.; Fletcher, E.; Labbe, A.; Joober, R.; Israël, M.; Szyf, M.; Agellon, L. B.; et al. A Longitudinal, Epigenome-Wide Study of DNA Methylation in Anorexia Nervosa: Results in Actively Ill, Partially Weight-Restored, Long-Term Remitted and Non-Eating-Disordered Women. JPN. 2019, 44, 205–213. DOI: 10.1503/jpn.170242.
  • Shen, Y.; Peng, C.; Bai, Q.; Ding, Y.; Yi, X.; Du, H.; He, L.; Zhou, D.; Chen, X. Epigenome-Wide Association Study Indicates Hypomethylation of Mtrnr2l8 in Large-Artery Atherosclerosis Stroke. Stroke 2019, 50, 1330–1338. DOI: 10.1161/STROKEAHA.118.023436.
  • Prasher, D.; Greenway, S. C.; Singh, R. B. The Impact of Epigenetics on Cardiovascular Disease. Biochem. Cell Biol. 2020, 98, (12–22. DOI: 10.1139/bcb-2019-0045.
  • Morival, J. L. P.; Widyastuti, H. P.; Nguyen, C. H. H.; Zaragoza, M. V.; Downing, T. L. DNA Methylation Analysis Reveals Epimutation Hotspots in Patients with Dilated Cardiomyopathy-Associated Laminopathies. Clin. Epigenet. 2021, 13, 139. DOI: 10.1186/s13148-021-01127-0.
  • Kim, J. H.; Cho, Y. H.; Hong, Y.-C. Microrna Expression in Response to Bisphenol A Is Associated with High Blood Pressure. Environ. Int. 2020, 141, 105791. DOI: 10.1016/j.envint.2020.105791.
  • Xiao, L. I.; Cao, Y.; Wang, Y.; Lai, X.; Gao, K. Q.; Du, P.; Zhang, B. K.; Jia, S. J. Aberrant Histone Modifications of Global Histone and Mcp-1 Promoter in Cd14(+) Monocytes from Patients with Coronary Artery Disease. Die Pharmazie 2018, 73, 202–206.
  • Indumathi, B.; Oruganti, S. S.; Naushad, S. M.; Kutala, V. K. Probing the Epigenetic Signatures in Subjects with Coronary Artery Disease. Mol. Biol. Rep. 2020, 47, 6693–6703. DOI: 10.1007/s11033-020-05723-w.
  • Bitarafan, S.; Yari, M.; Broumand, M. A.; Ghaderian, S. M. H.; Rahimi, M.; Mirfakhraie, R.; Azizi, F.; Omrani, M. D. Association of Increased Levels of Lncrna H19 in Pbmcs with Risk of Coronary Artery Disease. Cell J. 2019, 20, 564–568.
  • Banerjee, S.; Ponde, C. K.; Rajani, R. M.; Ashavaid, T. F. Differential Methylation Pattern in Patients with Coronary Artery Disease: Pilot Study. Mol. Biol. Rep. 2019, 46, 541–550. DOI: 10.1007/s11033-018-4507-y.
  • Rizzacasa, B.; Morini, E.; Mango, R.; Vancheri, C.; Budassi, S.; Massaro, G.; Maletta, S.; Macrini, M.; D'Annibale, S.; Romeo, F.; et al. Mir-423 Is Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. PLoS One. 2019, 14, e0216363. DOI: 10.1371/journal.pone.0216363.
  • Rakshit, S.; Sunny, J. S.; George, M.; Hanna, L. E.; Sarkar, K. R-Loop Modulated Epigenetic Regulation in T Helper Cells Mechanistically Associates Coronary Artery Disease and Non-Small Cell Lung Cancer. Transl. Oncol. 2021, 14, 101189. DOI: 10.1016/j.tranon.2021.101189.
  • Glezeva, N.; Moran, B.; Collier, P.; Moravec, C. S.; Phelan, D.; Donnellan, E.; Russell-Hallinan, A.; O'Connor, D. P.; Gallagher, W. M.; Gallagher, J.; et al. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation across Different Heart Failure Patient Subtypes. Circulation Heart Failure 2019, 12, e005765.
  • Zhang, Z.; Gao, W.; Long, Q.-Q.; Zhang, J.; Li, Y.-F.; Liu, D.-C.; Yan, J.-J.; Yang, Z.-J.; Wang, L.-S. Increased Plasma Levels of Lncrna H19 and Lipcar Are Associated with Increased Risk of Coronary Artery Disease in a Chinese Population. Sci. Rep. 2017, 7, 7491. DOI: 10.1038/s41598-017-07611-z.
  • Funamoto, M.; Sunagawa, Y.; Katanasaka, Y.; Shimizu, K.; Miyazaki, Y.; Sari, N.; Shimizu, S.; Mori, K.; Wada, H.; Hasegawa, K.; Morimoto, T. Histone Acetylation Domains Are Differentially Induced during Development of Heart Failure in Dahl Salt-Sensitive Rats. IJMS. 2021, 22, 1771. DOI: 10.3390/ijms22041771.
  • Li, B.; Feng, Z. H.; Sun, H.; Zhao, Z. H.; Yang, S. B.; Yang, P. The Blood Genome-Wide DNA Methylation Analysis Reveals Novel Epigenetic Changes in Human Heart Failure. Eur. Rev. Med. Pharmacol. Sci. 2017,21,(8, 1828–1836.
  • Shen, K.; Tu, T.; Yuan, Z.; Yi, J.; Zhou, Y.; Liao, X.; Liu, Q.; Zhou, X. DNA Methylation Dysregulations in Valvular Atrial Fibrillation. Clin. Cardiol. 2017, 40, 686–691. DOI: 10.1002/clc.22715.
  • Rahm, A.-K.; Wieder, T.; Gramlich, D.; Müller, M.; Wunsch, M.; El Tahry, F.; Heimberger, T.; Sandke, S.; Weis, T.; Most, P.; et al. Differential Regulation of Kca 2.1 (Kcnn1) K + Channel Expression by Histone Deacetylases in Atrial Fibrillation with Concomitant Heart Failure. Physiol. Rep. 2021, 9, e14835. DOI: 10.14814/phy2.14835.
  • Xu, J.; Wu, H.; Chen, S.; Qi, B.; Zhou, G.; Cai, L.; Zhao, L.; Wei, Y.; Liu, S. Microrna-30c Suppresses the Pro-Fibrogenic Effects of Cardiac Fibroblasts Induced by Tgf-B1 and Prevents Atrial Fibrosis by Targeting Tgfβrii. J. Cellular Molecular Medi. 2018, 22, 3045–3057. DOI: 10.1111/jcmm.13548.
  • Wu, J.; Han, D.; Shi, R.; Chen, M.; Sun, J.; Tian, H.; Yan, Y. Identification of Atrial Fibrillation-Associated Lncrnas in Atria from Patients with Rheumatic Mitral Valve Disease. Microsc. Res. Tech. 2019, 82, 1136–1144. DOI: 10.1002/jemt.23261.
  • van Ouwerkerk, A. F.; Hall, A. W.; Kadow, Z. A.; Lazarevic, S.; Reyat, J. S.; Tucker, N. R.; Nadadur, R. D.; Bosada, F. M.; Bianchi, V.; Ellinor, P. T.; et al. Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circ. Res. 2020, 127, 34–50. DOI: 10.1161/CIRCRESAHA.120.316574.
  • Keller, M.; Klös, M.; Rohde, K.; Krüger, J.; Kurze, T.; Dietrich, A.; Schön, M. R.; Gärtner, D.; Lohmann, T.; Dreßler, M.; et al. DNA Methylation of Sspn Is Linked to Adipose Tissue Distribution and Glucose Metabolism. FASEB J. 2018, 32, 6898–6910. DOI: 10.1096/fj.201800528R.
  • Simithy, J.; Sidoli, S.; Yuan, Z.-F.; Coradin, M.; Bhanu, N. V.; Marchione, D. M.; Klein, B. J.; Bazilevsky, G. A.; McCullough, C. E.; Magin, R. S.; et al. Characterization of Histone Acylations Links Chromatin Modifications with Metabolism. Nat. Commun. 2017, 8, 1141. DOI: 10.1038/s41467-017-01384-9.
  • Kim, J. H.; Kim, D. H.; Lim, Y. H.; Shin, C. H.; Lee, Y. A.; Kim, B. N.; Kim, J. I.; Hong, Y. C. Childhood Obesity-Related Mechanisms: Micrornome and Transcriptome Changes in a Nested Case-Control Study. Biomedicines 2021, 9(8).
  • Wang, Y.; Diao, S.; Hu, M.; Zhang, L. Methylation of Hypothalamic Tsc1-Mtor Signaling in Regulation of Obesity and Obesity Resistance. Biomed Res. Int. 2020, 2020, 1–6. DOI: 10.1155/2020/8723869.
  • Małodobra-Mazur, M.; Cierzniak, A.; Kaliszewski, K.; Dobosz, T. Pparg Hypermethylation as the First Epigenetic Modification in Newly Onset Insulin Resistance in Human Adipocytes. Genes 2021, 12, 889. DOI: 10.3390/genes12060889.
  • Kalkan, R.; Becer, E. Rank/Rankl/Opg Pathway Is an Important for the Epigenetic Regulation of Obesity. Mol. Biol. Rep. 2019, 46, 5425–5432. DOI: 10.1007/s11033-019-04997-z.
  • Jerram, S. T.; Dang, M. N.; Leslie, R. D. The Role of Epigenetics in Type 1 Diabetes. Curr. Diab. Rep. 2017, 17, 89. DOI: 10.1007/s11892-017-0916-x.
  • Gilbert, T. M.; Zürcher, N. R.; Wu, C. J.; Bhanot, A.; Hightower, B. G.; Kim, M.; Albrecht, D. S.; Wey, H. Y.; Schroeder, F. A.; Rodriguez-Thompson, A.; et al. Pet Neuroimaging Reveals Histone Deacetylase Dysregulation in Schizophrenia. J. Clin. Invest. 2018, 129, 364–372. DOI: 10.1172/JCI123743.
  • Kim, T. O.; Han, Y. K.; Yi, J. M. Hypermethylated Promoters of Tumor Suppressor Genes Were Identified in Crohn’s Disease Patients. Intest. Res. 2020, 18, 297–305. DOI: 10.5217/ir.2019.00105.
  • Liu, M.; Rao, H.; Liu, J.; Li, X.; Feng, W.; Gui, L.; Tang, H.; Xu, J.; Gao, W. Q.; Li, L. The Histone Methyltransferase Setd2 Modulates Oxidative Stress to Attenuate Experimental Colitis. Redox Biol. 2021, 43, 102004. DOI: 10.1016/j.redox.2021.102004.
  • Wetzel, A.; Scholtka, B.; Gerecke, C.; Kleuser, B. Epigenetic Histone Modulation Contributes to Improvements in Inflammatory Bowel Disease via Ebi3. Cell. Mol. Life Sci. 2020, 77, 5017–5030. DOI: 10.1007/s00018-020-03451-9.
  • Xu, X.; Huang, J.; Ocansey, D. K. W.; Xia, Y.; Zhao, Z.; Xu, Z.; Yan, Y.; Zhang, X.; Mao, F. The Emerging Clinical Application of M6a RNA Modification in Inflammatory Bowel Disease and Its Associated Colorectal Cancer. JIR. 2021, 14, 3289–3306. DOI: 10.2147/JIR.S320449.
  • Liu, X. L.; Cao, H. X.; Wang, B. C.; Xin, F. Z.; Zhang, R. N.; Zhou, D.; Yang, R. X.; Zhao, Z. H.; Pan, Q.; Fan, J. G. Mir-192-5p Regulates Lipid Synthesis in Non-Alcoholic Fatty Liver Disease through Scd-1. WJG. 2017, 23, 8140–8151. DOI: 10.3748/wjg.v23.i46.8140.
  • Zhao, X.-Y.; Xiong, X.; Liu, T.; Mi, L.; Peng, X.; Rui, C.; Guo, L.; Li, S.; Li, X.; Lin, J. D. Long Noncoding Rna Licensing of Obesity-Linked Hepatic Lipogenesis and Nafld Pathogenesis. Nat. Commun. 2018, 9, 2986. DOI: 10.1038/s41467-018-05383-2.
  • Shen, X.; Guo, H.; Xu, J.; Wang, J. Inhibition of Lncrna Hulc Improves Hepatic Fibrosis and Hepatocyte Apoptosis by Inhibiting the Mapk Signaling Pathway in Rats with Nonalcoholic Fatty Liver Disease. J. Cellular Physiol. 2019, 234, 18169–18179. DOI: 10.1002/jcp.28450.
  • Zhang, X.; Asllanaj, E.; Amiri, M.; Portilla-Fernandez, E.; Bramer, W. M.; Nano, J.; Voortman, T.; Pan, Q.; Ghanbari, M. Deciphering the Role of Epigenetic Modifications in Fatty Liver Disease: A Systematic Review. Eur. J. Clin. Invest. 2021, 51, e13479. DOI: 10.1111/eci.13479.
  • Chen, L.; Huang, W.; Wang, L.; Zhang, Z.; Zhang, F.; Zheng, S.; Kong, D. The Effects of Epigenetic Modification on the Occurrence and Progression of Liver Diseases and the Involved Mechanism. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 259–270. DOI: 10.1080/17474124.2020.1736042.
  • Ma, L.; Zheng, X.; Yang, Y.; Wang, J.; Xu, Y.; Wang, B. Epigenetic Differences of Chronic Hepatitis B in Different Tcm Syndromes: Protocol for a Case-Control, Non-Interventional, Observational Clinical Study. Medicine 2018, 97, e12452. DOI: 10.1097/MD.0000000000012452.
  • Dandri, M. Epigenetic Modulation in Chronic Hepatitis B Virus Infection. Semin. Immunopathol. 2020, 42, 173–185. DOI: 10.1007/s00281-020-00780-6.
  • Visconti, V. V.; Fittipaldi, S.; Ciuffi, S.; Marini, F.; Isaia, G.; D’Amelio, P.; Migliaccio, S.; Marcocci, C.; Minisola, S.; Nuti, R.; et al. Circulating Long Non-Coding Rna Gas5 Is Overexpressed in Serum from Osteoporotic Patients and Is Associated with Increased Risk of Bone Fragility. IJMS. 2020, 21, 6930. DOI: 10.3390/ijms21186930.
  • Kim, K. T.; Lee, Y. S.; Han, I. The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture. Int. J. Mol. Sci. 2020, 21–24.
  • Wang, G.; Li, Y.; Yang, G.; Yang, T.; He, L.; Wang, Y. Cathelicidin Antimicrobial Peptide (Camp) Gene Promoter Methylation Induces Chondrocyte Apoptosis. Hum. Genomics 2021, 15, 24. DOI: 10.1186/s40246-021-00321-8.
  • Dai, J.; Yu, D.; Wang, Y.; Chen, Y.; Sun, H.; Zhang, X.; Zhu, S.; Pan, Z.; Heng, B. C.; Zhang, S.; Ouyang, H. Kdm6b Regulates Cartilage Development and Homeostasis through Anabolic Metabolism. Ann. Rheum. Dis. 2017, 76, 1295–1303. DOI: 10.1136/annrheumdis-2016-210407.
  • Mao, G.; Zhang, Z.; Huang, Z.; Chen, W.; Huang, G.; Meng, F.; Zhang, Z.; Kang, Y. Microrna-92a-3p Regulates the Expression of Cartilage-Specific Genes by Directly Targeting Histone Deacetylase 2 in Chondrogenesis and Degradation. Osteoarthritis Cartilage. 2017, 25, 521–532. DOI: 10.1016/j.joca.2016.11.006.
  • Paydar, P.; Asadikaram, G.; Nejad, H. Z.; Akbari, H.; Abolhassani, M.; Moazed, V.; Nematollahi, M. H.; Ebrahimi, G.; Fallah, H. Epigenetic Modulation of Brca-1 and Mgmt Genes, and Histones H4 and H3 Are Associated with Breast Tumors. J. of Cellular Biochemistry 2019, 120, 13726–13736. DOI: 10.1002/jcb.28645.
  • Faldoni, F. L. C.; Rainho, C. A.; Rogatto, S. R. Epigenetics in Inflammatory Breast Cancer: Biological Features and Therapeutic Perspectives. Cells 2020, 9, 1164. DOI: 10.3390/cells9051164.
  • Wang, L.; Wang, L.; Chang, W.; Li, Y.; Wang, L. Microrna-373 Promotes the Development of Esophageal Squamous Cell Carcinoma by Targeting Lats2 and Oxr1. Int. J. Biol. Markers 2019, 34, 148–155. DOI: 10.1177/1724600819827964.
  • Singh, V.; Singh, A. P.; Sharma, I.; Singh, L. C.; Sharma, J.; Borthakar, B. B.; Rai, A. K.; Kataki, A. C.; Kapur, S.; Saxena, S. Epigenetic Deregulations of Wnt/B-Catenin and Transforming Growth Factor Beta-Smad Pathways in Esophageal Cancer: Outcome of DNA Methylation. J. Cancer Res. Ther. 2019, 15, 192–203.
  • Xiao, Y.; Su, M.; Ou, W.; Wang, H.; Tian, B.; Ma, J.; Tang, J.; Wu, J.; Wu, Z.; Wang, W.; Zhou, Y. Involvement of Noncoding RNAs in Epigenetic Modifications of Esophageal Cancer. Biomed. Pharmacother. 2019, 117, 109192. DOI: 10.1016/j.biopha.2019.109192.
  • Liu, C.; Yuan, Z. Y.; Yuan, H.; Wu, K. X.; Cao, B.; Ren, K. Y.; Cui, M. J.; Liu, J. H.; Chen, H. X.; Pang, Y. W. Status of Gene Methylation and Polymorphism in Different Courses of Ulcerative Colitis and Their Comparison with Sporadic Colorectal Cancer. Inflamm Bowel Dis 2021, 27, 522–529. DOI: 10.1093/ibd/izaa203.
  • Wu, H.; Qin, W.; Lu, S.; Wang, X.; Zhang, J.; Sun, T.; Hu, X.; Li, Y.; Chen, Q.; Wang, Y.; et al. Long Noncoding Rna Zfas1 Promoting Small Nucleolar Rna-Mediated 2′-O-Methylation via Nop58 Recruitment in Colorectal Cancer. Mol. Cancer 2020, 19, 95. DOI: 10.1186/s12943-020-01201-w.
  • Sun, L.; Chen, B.; Wu, J.; Jiang, C.; Fan, Z.; Feng, Y.; Xu, Y. Epigenetic Regulation of a Disintegrin and Metalloproteinase (Adam) Transcription in Colorectal Cancer Cells: Involvement of B-Catenin, Brg1, and Kdm4. Front. Cell Dev. Biol. 2020, 8, DOI: 10.3389/fcell.2020.581692.
  • Rivas, M.; Johnston, M. E.; Gulati, R.; Kumbaji, M.; Margues Aguiar, T. F.; Timchenko, L.; Krepischi, A.; Shin, S.; Bondoc, A.; Tiao, G.; et al. Hdac1-Dependent Repression of Markers of Hepatocytes and P21 Is Involved in Development of Pediatric Liver Cancer. Cellular Molecular Gastroenterol. Hepatol. 2021, 12, 1669–1682. DOI: 10.1016/j.jcmgh.2021.06.026.
  • Cerapio, J. P.; Marchio, A.; Cano, L.; López, I.; Fournié, J. J.; Régnault, B.; Casavilca-Zambrano, S.; Ruiz, E.; Dejean, A.; Bertani, S.; Pineau, P. Global DNA Hypermethylation Pattern and Unique Gene Expression Signature in Liver Cancer from Patients with Indigenous American Ancestry. Oncotarget 2021, 12, 475–492. DOI: 10.18632/oncotarget.27890.
  • Xin, X.; Lu, Y.; Xie, S.; Chen, Y.; Jiang, X.; Song, S.; Wang, L.; Pu, H.; Gui, X.; Li, T.; et al. Mir-155 Accelerates the Growth of Human Liver Cancer Cells by Activating Cdk2 via Targeting H3f3a. Molecular Therapy Oncolytics 2020, 17, 471–483. DOI: 10.1016/j.omto.2020.05.002.
  • O’Brien, A.; Zhou, T.; Tan, C.; Alpini, G.; Glaser, S. Role of Non-Coding Rnas in the Progression of Liver Cancer: Evidence from Experimental Models. Cancers 2019, 11, 1652. DOI: 10.3390/cancers11111652.
  • Xu, W.; Xu, M.; Wang, L.; Zhou, W.; Xiang, R.; Shi, Y.; Zhang, Y.; Piao, Y. Integrative Analysis of DNA Methylation and Gene Expression Identified Cervical Cancer-Specific Diagnostic Biomarkers. Sig. Transduct. Target. Ther. 2019, 4, 55. DOI: 10.1038/s41392-019-0081-6.
  • Zhang, L.; Tian, S.; Pei, M.; Zhao, M.; Wang, L.; Jiang, Y.; Yang, T.; Zhao, J.; Song, L.; Yang, X. Crosstalk between Histone Modification and DNA Methylation Orchestrates the Epigenetic Regulation of the Costimulatory Factors, Tim‑3 and Galectin‑9, in. Cervical Cancer. Oncol. Reports 2019, 42, (6), 2655–69.
  • Park, S.; Eom, K.; Kim, J.; Bang, H.; Wang, H. Y.; Ahn, S.; Kim, G.; Jang, H.; Kim, S.; Lee, D.; et al. Mir-9, Mir-21, and Mir-155 as Potential Biomarkers for Hpv Positive and Negative Cervical Cancer. BMC Cancer. 2017, 17, 658. DOI: 10.1186/s12885-017-3642-5.
  • Haldrup, C.; Pedersen, A. L.; Øgaard, N.; Strand, S. H.; Høyer, S.; Borre, M.; Ørntoft, T. F.; Sørensen, K. D. Biomarker Potential of St6galnac3 and Znf660 Promoter Hypermethylation in Prostate Cancer Tissue and Liquid Biopsies. Mol. Oncol. 2018, 12, 545–560. DOI: 10.1002/1878-0261.12183.
  • Nowacka-Zawisza, M.; Wiśnik, E. DNA Methylation and Histone Modifications as Epigenetic Regulation in Prostate Cancer (Review). Oncol. Rep. 2017, 38, 2587–2596. DOI: 10.3892/or.2017.5972.
  • la Rosa, A. H.; Acker, M.; Swain, S.; Manoharan, M. The Role of Epigenetics in Kidney Malignancies. Cent. European J. Urol. 2015, 68, 157–164. DOI: 10.5173/ceju.2015.453.
  • Qi, H.; Liu, H.; Pullamsetti, S.; Günther, S.; Kuenne, C.; Atzberger, A.; Sommer, N.; Hadžić, S.; Günther, A.; Weissmann, N.; et al. Epigenetic Regulation by Suv4-20h1 in Cardiopulmonary Progenitor Cells Is Required to Prevent Pulmonary Hypertension and Copd. Circulation 2021, 144, 1042–1058. DOI: 10.1161/CIRCULATIONAHA.120.051680.
  • Wu, J.; Huang, Q.; Li, Q.; Gu, Y.; Zhan, Y.; Wang, T.; Chen, J.; Zeng, Z.; Lv, Y.; Zhao, J.; et al. Increased Methyl-Cpg-Binding Domain Protein 2 Promotes Cigarette Smoke-Induced Pulmonary Hypertension. Front. Oncol. 2022, 12,
  • Wang, I. J.; Karmaus, W. J.; Chen, S. L.; Holloway, J. W.; Ewart, S. Effects of Phthalate Exposure on Asthma May Be Mediated through Alterations in DNA Methylation. Clin. Epigenet. 2015, 7, 27. DOI: 10.1186/s13148-015-0060-x.
  • Napoli, C.; Benincasa, G.; Loscalzo, J. Epigenetic Inheritance Underlying Pulmonary Arterial Hypertension. ATVB. 2019, 39, 653–664. DOI: 10.1161/ATVBAHA.118.312262.
  • New Study Shows Air Pollution May Worsen Pulmonary Arterial Hypertension. Available from: https://europeanlung.org/en/news-and-blog/air-pollution-pulmonary-arterial-hypertension/.
  • Bahadar, H.; Abdollahi, M.; Maqbool, F.; Baeeri, M.; Niaz, K. Mechanistic Overview of Immune Modulatory Effects of Environmental Toxicants. IADT. 2015, 13, 382–386. DOI: 10.2174/1871528114666150529103003.
  • Gillespie, J.; Savic, S.; Wong, C.; Hempshall, A.; Inman, M.; Emery, P.; Grigg, R.; McDermott, M. F. Histone Deacetylases Are Dysregulated in Rheumatoid Arthritis and a Novel Histone Deacetylase 3–Selective Inhibitor Reduces Interleukin-6 Production by Peripheral Blood Mononuclear Cells from Rheumatoid Arthritis Patients. Arthritis. Rheumatism 2012, 64, 418–422. DOI: 10.1002/art.33382.
  • Kawabata, T.; Nishida, K.; Takasugi, K.; Ogawa, H.; Sada, K.; Kadota, Y.; Inagaki, J.; Hirohata, S.; Ninomiya, Y.; Makino, H. Increased Activity and Expression of Histone Deacetylase 1 in Relation to Tumor Necrosis Factor-Alpha in Synovial Tissue of Rheumatoid Arthritis. Arthritis Res. Ther. 2010, 12, R133. DOI: 10.1186/ar3071.
  • Ai, R.; Laragione, T.; Hammaker, D.; Boyle, D. L.; Wildberg, A.; Maeshima, K.; Palescandolo, E.; Krishna, V.; Pocalyko, D.; Whitaker, J. W.; et al. Comprehensive Epigenetic Landscape of Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Nat. Commun. 2018, 9, 1921. DOI: 10.1038/s41467-018-04310-9.
  • Meyer, A.; Sandler, D. P.; Beane Freeman, L. E.; Hofmann, J. N.; Parks, C. G. Pesticide Exposure and Risk of Rheumatoid Arthritis among Licensed Male Pesticide Applicators in the Agricultural Health Study. Environ. Health Perspect. 2017, 125, 077010. DOI: 10.1289/EHP1013.
  • Gattuso, G.; Falzone, L.; Costa, C.; Giambò, F.; Teodoro, M.; Vivarelli, S.; Libra, M.; Fenga, C. Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of Hsa-Mir-199a-5p. Intern. J. Environ. Res. Public Health [Internet] 2022, 19,
  • Abderrahmani, A.; Yengo, L.; Caiazzo, R.; Canouil, M.; Cauchi, S.; Raverdy, V.; Plaisance, V.; Pawlowski, V.; Lobbens, S.; Maillet, J.; et al. Increased Hepatic Pdgf-Aa Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes 2018, 67, 1310–1321. DOI: 10.2337/db17-1539.
  • Nie, L.; Shuai, L.; Zhu, M.; Liu, P.; Xie, Z. F.; Jiang, S.; Jiang, H. W.; Li, J.; Zhao, Y.; Li, J. Y.; Tan, M. The Landscape of Histone Modifications in a High-Fat Diet-Induced Obese (Dio) Mouse Model. MolecularCellular Proteomics: MCP 2017, 16, 1324–1334. DOI: 10.1074/mcp.M117.067553.
  • Wang, Y.; Hou, C.; Wisler, J.; Singh, K.; Wu, C.; Xie, Z.; Lu, Q.; Zhou, Z. Elevated Histone H3 Acetylation Is Associated with Genes Involved in T Lymphocyte Activation and Glutamate Decarboxylase Antibody Production in Patients with Type 1 Diabetes. J. Diabetes Investig. 2019, 10, 51–61. DOI: 10.1111/jdi.12867.
  • Huang, X.; Xie, H.; Xue, G.; Ye, M.; Zhang, L. Mir-3202 - Promoted H5v Cell Apoptosis by Directly Targeting Fas Apoptotic Inhibitory Molecule 2 (Faim2) in High Glucose Condition. Med. Sci. Monit. 2017, 23, 975–983. DOI: 10.12659/MSM.899443.
  • Huo, W.; Hou, Y.; Li, Y.; Li, H. Downregulated Lncrna-Miat Confers Protection against Erectile Dysfunction by Downregulating Lipoprotein Lipase via Activation of Mir-328a-5p in Diabetic Rats. Biochim. Biophys. Acta. Mol. Basis Dis. 2019, 1865, 1226–1240. DOI: 10.1016/j.bbadis.2019.01.018.
  • Khan, F.; Momtaz, S.; Niaz, K.; Hassan, F. I.; Abdollahi, M. Epigenetic Mechanisms Underlying the Toxic Effects Associated with Arsenic Exposure and the Development of Diabetes. Food Chem. Toxicol. 2017, 107, 406–417. DOI: 10.1016/j.fct.2017.07.021.
  • Onishchenko, N.; Karpova, N.; Sabri, F.; Castrn, E.; Ceccatelli, S. Long-Lasting Depression-Like Behavior and Epigenetic Changes of Bdnf Gene Expression Induced by Perinatal Exposure to Methylmercury. J. Neurochem. 2008, 106, 1378–1387. DOI: 10.1111/j.1471-4159.2008.05484.x.
  • Talarowska, M. Epigenetic Mechanisms in the Neurodevelopmental Theory of Depression. Depression Res. Treat. 2020, 2020, 1–9. DOI: 10.1155/2020/6357873.
  • Kundakovic, M.; Jaric, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes 2017, 8, 104. DOI: 10.3390/genes8030104.
  • Lima, C.; Kovács, E.; Mirza, S.; Favero-Campbell, A.; Paim Diaz, A.; Quevedo, J.; Argue, B.; Richards, J.; Williams, A.; Wemmie, J.; et al. Association between the Epigenetic Lifespan Predictor Grimage and History of Suicide Attempt in Bipolar Disorder. 2022,
  • Fries, G. R.; Bauer, I. E.; Scaini, G.; Wu, M.-J.; Kazimi, I. F.; Valvassori, S. S.; Zunta-Soares, G.; Walss-Bass, C.; Soares, J. C.; Quevedo, J. Accelerated Epigenetic Aging and Mitochondrial DNA Copy Number in Bipolar Disorder. Transl. Psychiatry 2017, 7, 1283. DOI: 10.1038/s41398-017-0048-8.
  • Boehm, I.; Walton, E.; Alexander, N.; Batury, V. L.; Seidel, M.; Geisler, D.; King, J. A.; Weidner, K.; Roessner, V.; Ehrlich, S. Peripheral Serotonin Transporter DNA Methylation Is Linked to Increased Salience Network Connectivity in Females with Anorexia Nervosa. J. Psychiat. Neurosci. JPN 2019, 45, 8.
  • Hübel, C.; Marzi, S. J.; Breen, G.; Bulik, C. M. Epigenetics in Eating Disorders: A Systematic Review. Mol. Psychiatry 2019, 24, 901–915. DOI: 10.1038/s41380-018-0254-7.
  • Helsley, R. N.; Zhou, C. Epigenetic Impact of Endocrine Disrupting Chemicals on Lipid Homeostasis and Atherosclerosis: A Pregnane X Receptor-Centric View. Environ. Epigenetics 2017, 3, DOI: 10.1093/eep/dvx017.
  • Yang, T. C.; Chen, Y. J.; Chang, S. F.; Chen, C. H.; Chang, P. Y.; Lu, S. C. Malondialdehyde Mediates Oxidized Ldl-Induced Coronary Toxicity through the Akt-Fgf2 Pathway via DNA Methylation. J. Biomed. Sci. 2014, 21, 11.
  • Svoboda, L. K.; Ishikawa, T.; Dolinoy, D. C. Developmental Toxicant Exposures and Sex-Specific Effects on Epigenetic Programming and Cardiovascular Health across Generations. Environ. Epigenetics 2022, 8, dvac017. DOI: 10.1093/eep/dvac017.
  • Papazoglou, P.; Peng, L.; Sachinidis, A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front. Cardiovasc. Med. 2021, 8, 658900. DOI: 10.3389/fcvm.2021.658900.
  • Dutta, S.; Haggerty, D. K.; Rappolee, D. A.; Ruden, D. M. Phthalate Exposure and Long-Term Epigenomic Consequences: A Review. Front. Genet. 2020, 11, 405. DOI: 10.3389/fgene.2020.00405.
  • Tracey, R.; Manikkam, M.; Guerrero-Bosagna, C.; Skinner, M. K. Hydrocarbons (Jet Fuel Jp-8) Induce Epigenetic Transgenerational Inheritance of Obesity, Reproductive Disease and Sperm Epimutations. Reproductive Toxicology (Elmsford, NY) 2013, 36, 104–116. DOI: 10.1016/j.reprotox.2012.11.011.
  • Xue, J.; Ideraabdullah, F. Y. An Assessment of Molecular Pathways of Obesity Susceptible to Nutrient, Toxicant and Genetically Induced Epigenetic Perturbation. J. Nutri. Biochem. 2016, 30, 1–13. DOI: 10.1016/j.jnutbio.2015.09.002.
  • Curtis, E. M.; Murray, R.; Titcombe, P.; Cook, E.; Clarke-Harris, R.; Costello, P.; Garratt, E.; Holbrook, J. D.; Barton, S.; Inskip, H.; et al. Perinatal DNA Methylation at Cdkn2a Is Associated with Offspring Bone Mass: Findings from the Southampton Women’s Survey. J. Bone Miner. Res. 2017, 32, 2030–2040. DOI: 10.1002/jbmr.3153.
  • Harvey, N. C.; Sheppard, A.; Godfrey, K. M.; McLean, C.; Garratt, E.; Ntani, G.; Davies, L.; Murray, R.; Inskip, H. M.; Gluckman, P. D.; et al. Childhood Bone Mineral Content Is Associated with Methylation Status of the Rxra Promoter at Birth. J. Bone Miner. Res. 2014, 29, 600–607. DOI: 10.1002/jbmr.2056.
  • Lui, J. C.; Garrison, P.; Nguyen, Q.; Ad, M.; Keembiyehetty, C.; Chen, W.; Jee, Y. H.; Landman, E.; Nilsson, O.; Barnes, K. M.; Baron, J. Ezh1 and Ezh2 Promote Skeletal Growth by Repressing Inhibitors of Chondrocyte Proliferation and Hypertrophy. Nat. Commun. 2016, 7, 13685. DOI: 10.1038/ncomms13685.
  • Miranda-Duarte, A.; Borgonio-Cuadra, V. M.; González-Huerta, N. C.; Rojas-Toledo, E. X.; Ahumada-Pérez, J. F.; Sosa-Arellano, M.; Morales-Hernández, E.; Pérez-Hernández, N.; Rodríguez-Pérez, J. M. DNA Methyltransferase Genes Polymorphisms Are Associated with Primary Knee Osteoarthritis: A Matched Case-Control Study. Rheumatol. Int. 2020, 40, 573–581. DOI: 10.1007/s00296-019-04474-7.
  • Portal-Núñez, S.; Esbrit, P.; Alcaraz, M. J.; Largo, R. Oxidative Stress, Autophagy, Epigenetic Changes and Regulation by Mirnas as Potential Therapeutic Targets in Osteoarthritis. Biochem. Pharmacol. 2016, 108, 1–10. DOI: 10.1016/j.bcp.2015.12.012.
  • Chou, C. K.; Huang, H. W.; Yang, C. F.; Dahms, H. U.; Liang, S. S.; Wang, T. N.; Kuo, P. L.; Hsi, E.; Tsai, E. M.; Chiu, C. C. Reduced Camptothecin Sensitivity of Estrogen Receptor-Positive Human Breast Cancer Cells following Exposure to Di(2-Ethylhexyl)Phthalate (Dehp). Is Associated with DNA Methylation Changes. Environ. Toxicol. 2019, 34, (4),401–14.
  • Vo, A. T.; Millis, R. M. Epigenetics and Breast Cancers. Obst. Gynecol. Intern. 2012, 2012, 1–10. DOI: 10.1155/2012/602720.
  • Romagnolo, D. F.; Daniels, K. D.; Grunwald, J. T.; Ramos, S. A.; Propper, C. R.; Selmin, O. I. Epigenetics of Breast Cancer: Modifying Role of Environmental and Bioactive Food Compounds. Mol. Nutr. Food Res. 2016, 60, 1310–1329. DOI: 10.1002/mnfr.201501063.
  • Franklin, T. B.; Mansuy, I. M. Epigenetic Inheritance in Mammals: Evidence for the Impact of Adverse Environmental Effects. Neurobiol. Dis. 2010, 39, 61–65.
  • Khalid, M.; Abdollahi, M. Environmental Distribution of Personal Care Products and Their Effects on Human Health. Iran J. Pharm. Res. 2021, 20, 216–253.
  • Dumitrescu, R. G. Alcohol-Induced Epigenetic Changes in Cancer. Method. Molecular Biol. (Clifton, NJ) 2018, 1856, 157–172.
  • Barrow, T. M.; Klett, H.; Toth, R.; Böhm, J.; Gigic, B.; Habermann, N.; Scherer, D.; Schrotz-King, P.; Skender, S.; Abbenhardt-Martin, C.; et al. Smoking Is Associated with Hypermethylation of the Apc 1a Promoter in Colorectal Cancer: The Colocare Study. J. Pathol. 2017, 243, 366–375. DOI: 10.1002/path.4955.
  • Bultman, S. J. Interplay between Diet, Gut Microbiota, Epigenetic Events, and Colorectal Cancer. Mol. Nutr. Food Res. 2017, 61, 1500902. DOI: 10.1002/mnfr.201500902.
  • Dai, Y.; Huang, K.; Zhang, B.; Zhu, L.; Xu, W. Aflatoxin B1-Induced Epigenetic Alterations: An Overview. Food Chem Toxicol Intern. J. Pub. British Industrial Biol. Res. Ass. 2017, 109, 683–689. DOI: 10.1016/j.fct.2017.06.034.
  • Klukovich, R.; Nilsson, E.; Sadler-Riggleman, I.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M. K. Environmental Toxicant Induced Epigenetic Transgenerational Inheritance of Prostate Pathology and Stromal-Epithelial Cell Epigenome and Transcriptome Alterations: Ancestral Origins of Prostate Disease. Sci. Rep. 2019, 9, 2209. DOI: 10.1038/s41598-019-38741-1.
  • Joosten, S. C.; Smits, K. M.; Aarts, M. J.; Melotte, V.; Koch, A.; Tjan-Heijnen, V. C.; van Engeland, M. Epigenetics in Renal Cell Cancer: Mechanisms and Clinical Applications. Nat. Rev. Urol. 2018, 15, 430–451. DOI: 10.1038/s41585-018-0023-z.
  • Wang, Y.; Chen, L.; Ju, L.; Qian, K.; Wang, X.; Xiao, Y.; Wang, G. Epigenetic Signature Predicts Overall Survival Clear Cell Renal Cell Carcinoma. Cancer Cell Int. 2020, 20, 564.
  • Angulo, J. C.; Manini, C.; López, J. I.; Pueyo, A.; Colás, B.; Ropero, S. The Role of Epigenetics in the Progression of Clear Cell Renal Cell Carcinoma and the Basis for Future Epigenetic Treatments. Cancers 2021, 13, 2071. DOI: 10.3390/cancers13092071.
  • Singh, R. D.; Tiwari, R.; Khan, H.; Kumar, A.; Srivastava, V. Arsenic Exposure Causes Epigenetic Dysregulation of Il-8 Expression Leading to Proneoplastic Changes in Kidney Cells. Toxicol. Lett. 2015, 237, 1–10. DOI: 10.1016/j.toxlet.2015.05.014.
  • Yin, R.; Mo, J.; Dai, J.; Wang, H. Nickel(Ii) Inhibits the Oxidation of DNA 5-Methylcytosine in Mammalian Somatic Cells and Embryonic Stem Cells. Metallomics 2018, 10, 504–512. DOI: 10.1039/C7MT00346C.
  • Marsit, C. J. Placental Epigenetics in Children’s Environmental Health. Seminars Reproduc. Med. 2016, 34, 36–41.
  • Grindler, N. M.; Vanderlinden, L.; Karthikraj, R.; Kannan, K.; Teal, S.; Polotsky, A. J.; Powell, T. L.; Yang, I. V.; Jansson, T. Exposure to Phthalate, an Endocrine Disrupting Chemical. Alters the First Trimester Placental Methylome and Transcriptome in Women. Sci. Report. 2018, 8, 6086.
  • LaRocca, J.; Binder, A. M.; McElrath, T. F.; Michels, K. B. The Impact of First Trimester Phthalate and Phenol Exposure on Igf2/H19 Genomic Imprinting and Birth Outcomes. Environ. Res. 2014, 133, 396–406. DOI: 10.1016/j.envres.2014.04.032.
  • Rider, C. F.; Carlsten, C. Air Pollution and DNA Methylation: Effects of Exposure in Humans. Clin. Epigenet. 2019, 11, 131. DOI: 10.1186/s13148-019-0713-2.
  • Chen, C. H.; Jiang, S. S.; Chang, I. S.; Wen, H. J.; Sun, C. W.; Wang, S. L. Association between Fetal Exposure to Phthalate Endocrine Disruptor and Genome-Wide DNA Methylation at Birth. Environ. Res. 2018, 162, 261–270. DOI: 10.1016/j.envres.2018.01.009.
  • Wu, S.; Zhu, J.; Li, Y.; Lin, T.; Gan, L.; Yuan, X.; Xu, M.; Wei, G. Dynamic Effect of Di-2-(Ethylhexyl) Phthalate on Testicular Toxicity: Epigenetic Changes and Their Impact on Gene Expression. Int. J. Toxicol. 2010, 29, 193–200.
  • Stuppia, L.; Franzago, M.; Ballerini, P.; Gatta, V.; Antonucci, I. Epigenetics and Male Reproduction: The Consequences of Paternal Lifestyle on Fertility, Embryo Development, and Children Lifetime Health. Clin. Epigenet. 2015, 7, 120. DOI: 10.1186/s13148-015-0155-4.
  • Chianese, R.; Troisi, J.; Richards, S.; Scafuro, M.; Fasano, S.; Guida, M.; Pierantoni, R.; Meccariello, R. Bisphenol a in Reproduction: Epigenetic Effects. CMC. 2018, 25, 748–770. DOI: 10.2174/0929867324666171009121001.
  • Estill, M. S.; Krawetz, S. A. The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr. Envir. Health Rpt. 2016, 3, 202–213. DOI: 10.1007/s40572-016-0101-4.
  • Willson, C. J. Phthalate Toxicity in Rats and Its Relation to Testicular Dysgenesis Syndrome in Humans. Toxicol. Pathol. 2021, 49, 1416–1424. DOI: 10.1177/01926233211045331.
  • Legoff, L.; D’Cruz, S. C.; Tevosian, S.; Primig, M.; Smagulova, F. Transgenerational Inheritance of Environmentally Induced Epigenetic Alterations during Mammalian Development. Cells 2019, 8, 1559. DOI: 10.3390/cells8121559.
  • Santangeli, S.; Maradonna, F.; Gioacchini, G.; Cobellis, G.; Piccinetti, C. C.; Dalla Valle, L.; Carnevali, O. Bpa-Induced Deregulation of Epigenetic Patterns: Effects on Female Zebrafish Reproduction. Sci. Rep. 2016, 6, 21982. DOI: 10.1038/srep21982.
  • Nilsson, E. E.; Sadler-Riggleman, I.; Skinner, M. K. Environmentally Induced Epigenetic Transgenerational Inheritance of Disease. Environmental Epigenetics 2018, 4, dvy016. DOI: 10.1093/eep/dvy016.
  • Rattan, S.; Flaws, J. A. The Epigenetic Impacts of Endocrine Disruptors on Female Reproduction across Generations†. Biol Reproduct. 2019, 101, 635–644. DOI: 10.1093/biolre/ioz081.
  • Alavian-Ghavanini, A.; Rüegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. DOI: 10.1111/bcpt.12878.
  • Plunk, E. C.; Richards, S. M. Epigenetic Modifications Due to Environment, Ageing, Nutrition, and Endocrine Disrupting Chemicals and Their Effects on the Endocrine System. Int. J. Endocrinol. 2020, 2020, 1–11. DOI: 10.1155/2020/9251980.
  • Van Cauwenbergh, O.; Di Serafino, A.; Tytgat, J.; Soubry, A. Transgenerational Epigenetic Effects from Male Exposure to Endocrine-Disrupting Compounds: A Systematic Review on Research in Mammals. Clin. Epigenet. 2020, 12, 65. DOI: 10.1186/s13148-020-00845-1.
  • Gapp, K.; von Ziegler, L.; Tweedie-Cullen, R. Y.; Mansuy, I. M. Early Life Epigenetic Programming and Transmission of Stress-Induced Traits in Mammals: How and When Can Environmental Factors Influence Traits and Their Transgenerational Inheritance? BioEssays News Rev. Molecular Cell. Develop. Biol. 2014, 36, 491–502. DOI: 10.1002/bies.201300116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.