Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 7
103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling of NO mass transfer characteristics absorbed in sodium persulfate solution with a bubble reactor

, , , , &
Pages 671-679 | Received 24 May 2022, Accepted 30 Nov 2022, Published online: 01 May 2023

References

  • Yu, J.; Voß, S.; Tang, G. Strategy Development for Retrofitting Ships for Implementing Shore Side Electricity. Transp. Res. 2019, 74, 201–213. DOI: 10.1016/j.trd.2019.08.004.
  • Balachandran, W.; Manivannan, N.; Beleca, R.; Abbod, M. F.; Brennen, D.; Alozie, N. S.; Ganippa, L. C. Nonthermal Plasma System for Marine Diesel Engine Emission Control. IEEE Trans. on Ind. Applicat 2016, 52, 2496–2505. DOI: 10.1109/TIA.2016.2518131.
  • Huang, L.; Wen, Y. Q.; Geng, X. Q.; Zhou, C. H.; Xiao, C. S. Integrating Multi-Source Maritime Information to Estimate Ship Exhaust Emissions under Wind, Wave and Current Conditions. Transport. Res. Part D Transport Environ. 2018, 59, 148–159. DOI: 10.1016/j.trd.2017.12.012.
  • MARPOL: Annex VI and NTC 2008 with Guidelines for Implementation. International Maritime Organization, 2013.
  • Burgard, D. A.; Bria, C. Bridge-Based Sensing of NOx and SO2 Emissions from Ocean-Going Ships[J]. Atmos. Environ. 2016, 136, 54–60. DOI: 10.1016/j.atmosenv.2016.04.014.
  • Yang, S. L.; Pan, X. X.; Han, Z. T.; Zhao, D. S.; Liu, B. J.; Zheng, D. K.; Yan, Z. J. Removal of NOx and SO2 from Simulated Ship Emissions Using Wet Scrubbing Based on Seawater Electrolysis Technology. Chem. Eng. J. 2018, 331, 8–15. DOI: 10.1016/j.cej.2017.08.083.
  • Wei, H. Q.; Zhao, W. H.; Lu, Z.; Zhou, L. Effects of Oxygen Concentrations on the Ignition and Quasi-Steady Processes of n-Heptane Spray Flames Using Large Eddy Simulation. Fuel 2019, 241, 786–801. DOI: 10.1016/j.fuel.2018.12.097.
  • Guo, M. Y.; Fu, Z. C.; Ma, D. G.; Ji, N.; Song, C. F.; Liu, Q. L. A Short Review of Treatment Methods of Marine Diesel Engine Exhaust Gases. Proc. Eng. 2015, 121, 938–943. DOI: 10.1016/j.proeng.2015.09.059.
  • Magnusson, M.; Fridell, E.; Ingelsten, H. H. The Influence of Sulfur Dioxide and Water on the Performance of a Marine SCR Catalyst. Appl. Catal, B 2012, 111-112, 20–26. DOI: 10.1016/j.apcatb.2011.09.010.
  • Mehregan, M.; Moghim, M. Experimental Investigation of the Distinct Effects of Nanoparticles Addition and urea-SCR after-Treatment System on NOx Emissions in a Blended-Biodiesel Fueled Internal Combustion Engine. Fuel 2020, 262, 116609. DOI: 10.1016/j.fuel.2019.116609.
  • Xi, H. Y.; Zhou, S.; Zhang, Z. Novel Method Using Na2S2O8 as an Oxidant to Simultaneously Absorb SO2 and NO from Marine Diesel Engine Exhaust Gases. Energy Fuels 2020, 34, 1984–1991. DOI: 10.1021/acs.energyfuels.9b03334.
  • Yang, S. L.; Pan, X. X.; Han, Z. T.; Zhao, D. S.; Liu, B. J.; Zheng, D. K.; Yan, Z. J. Kinetics of Nitric Oxide Absorption from Simulated Flue Gas by a Wet UV/Chlorine Advanced Oxidation Process. Energy Fuels 2017, 31, 7263–7271. DOI: 10.1021/acs.energyfuels.7b00458.
  • Liang, C. J.; Chen, Y. J.; Chang, K. J. Evaluation of Persulfate Oxidative Wet Scrubber for Removing BTEX Gases. J. Hazard Mater. 2009, 164, 571–579. DOI: 10.1016/j.jhazmat.2008.08.056.
  • Liang, C. J.; Lee, I. L. In Situ Iron Activated Persulfate Oxidative Fluid Sparging Treatment of TCE contamination-A Proof of Concept Study. J. Contam. Hydrol. 2008, 100, 91–100. DOI: 10.1016/j.jconhyd.2008.05.012.
  • Do, S. H.; Kwon, Y. J.; Kong, S. H. Effect of Metal Oxides on the Reactivity of Persulfate/Fe(II) in the Remediation of Diesel-Contaminated Soil and Sand. J. Hazard Mater. 2010, 182, 933–936. DOI: 10.1016/j.jhazmat.2010.06.068.
  • Adewuyi, Y. G.; Khan, M. A. Nitric Oxide Removal from Flue Gas by Combined Persulfate and Ferrous–EDTA Solutions: Effects of Persulfate and EDTA Concentrations, Temperature, pH and SO2. Chem. Eng. J. 2016, 304, 793–807. DOI: 10.1016/j.cej.2016.06.071.
  • Xi, H. Y.; Zhou, S.; Zhou, J. X. New Experimental Results of NO Removal from Simulated Marine Engine Exhaust Gases by Na2S2O8/Urea Solutions. Chem.Eng. J. 2019, 362, 12–20. DOI: 10.1016/j.cej.2019.01.002.
  • Ghanbari, F.; Moradi, M. Application of Peroxymonosulfate and Its Activation Methods for Degradation of Environmental Organic Pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. DOI: 10.1016/j.cej.2016.10.064.
  • Ike, I. A.; Linden, K. G.; Orbell, J. D.; Duke, M. Critical Review of the Science and Sustainability of Persulphate Advanced Oxidation Processes. Chem. Eng. J. 2018, 338, 651–669. DOI: 10.1016/j.cej.2018.01.034.
  • Wang, J. L.; Wang, S. Z. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants.Chem. Eng. J. 2018, 334, 1502–1517. DOI: 10.1016/j.cej.2017.11.059.
  • Xi, H. Y.; Zhou, S.; Zhou, J. X.; Zhang, Z. A Novel Combined System Using Na2S2O8/Urea to Simultaneously Remove SO2 and NO in Marine Diesel Engine Exhaust. J. Hazard Mater. 2020, 399, 123069. DOI: 10.1016/j.jhazmat.2020.123069.
  • Xi, H. Y.; Zhou, S.; Zhang, Z. A Novel Method for the Synchronous Absorption of SO2 and NO from Marine Diesel Engines. Fuel Process. Technol. 2020, 210, 106560. DOI: 10.1016/j.fuproc.2020.106560.
  • Chen, R.; Zhang, T. S.; Guo, Y. Q.; Wang, J. W.; Wei, J. X.; Yu, Q. J. Recent Advances in Simultaneous Removal of SO2 and NOx from Exhaust Gases: Removal Process, Mechanism and Kinetics. Chem. Eng. J. 2021, 420, 127588. DOI: 10.1016/j.cej.2020.127588.
  • Liu, J.; Wang, Z. W. A New Method for Denitration Adsorption by Na2S2O8 Compound Absorbent in Industry. Environ. Eng. 2019, 37, 98–102.
  • Wang, Y.; Liu, Y. X.; Shi, S. Removal of Nitric Oxide from Flue Gas Using Novel Microwave-Activated Double Oxidants System. Chem. Eng. J. 2020, 393, 124754. DOI: 10.1016/j.cej.2020.124754.
  • Xiao, Z. G.; Li, D. X. Simultaneous Removal of NO and SO2 with a Micro-Bubble Gas-Liquid Dispersion System Based on Air/H2O2/Na2S2O8. Environ. Technol. 2020, 41, 3573–3583. DOI: 10.1080/09593330.2019.1615134.
  • Hao, R. L.; Yang, S.; Yuan, B.; Zhao, Y. Simultaneous Desulfurization and Denitrification through an Integrative Process Utilizing NaClO2/Na2S2O8. Fuel Process. Technol. 2017, 159, 145–152. DOI: 10.1016/j.fuproc.2017.01.018.
  • Vázquez, G.; Cancela, M. A.; Riverol, C.; Alvarez, E.; Navaza, J. M. Application of the Danckwerts Method in a Bubble Column: Effects of Surfactants on Mass Transfer Coefficient and Interfacial Area. Chem. Eng. J. 2000, 78, 13–19. DOI: 10.1016/S1385-8947(99)00174-6.
  • Lye, G. J.; Stuckey, D. C. Extraction of erythromycin-A Using Colloidal Liquid Aphrons: Part II. Mass Transfer Kinetics. Chem. Eng. Sci. 2001, 56, 97–108. DOI: 10.1016/S0009-2509(00)00141-X.
  • Zhao, B.; Wang, J. F.; Yang, W. G.; Jin, Y. Gas–Liquid Mass Transfer in Slurry Bubble Systems: I. Mathematical Modeling Based on a Single Bubble Mechanism. Chem. Eng. J. 2003, 96, 23–27. DOI: 10.1016/j.cej.2003.08.010.
  • Cents, A. H. G.; de Bruijn, F. T.; Brilman, D. W. F.; Versteeg, G. F. Validation of the Danckwerts-Plot Technique by Simultaneous Chemical Absorption of CO2 and Physical Desorption of O2. Chem. Eng. Sci. 2005, 60, 5809–5818. DOI: 10.1016/j.ces.2005.05.021.
  • Sobieszuk, P.; Pohorecki, R.; Cygański, P.; Grzelka, J. Determination of the Interfacial Area and Mass Transfer Coefficients in the Taylor Gas-Liquid Flow in a Microchannel. Chem. Eng. Sci. 2011, 66, 6048–6056. DOI: 10.1016/j.ces.2011.08.029.
  • Cents, A. H. G.; Brilman, D. W. F.; Versteeg, G. F. Gas Absorption in an Agitated Gas-Liquid-Liquid System. Chem. Eng. Sci. 2001, 56, 1075–1083. DOI: 10.1016/S0009-2509(00)00324-9.
  • Wang, Z. P.; Wang, Z. W. Mass Transfer-Reaction Kinetics Study on Absorption of NO with Dual Oxidants (H2O2/S2O82–). Ind. Eng. Chem. Res. 2015, 54, 9905–9912. DOI: 10.1021/acs.iecr.5b02162.
  • Liu, Y. X.; Pan, J. F.; Tang, A. K.; Wang, Q. A Study on Mass Transfer–Reaction Kinetics of NO Absorption by Using UV/H2O2/NaOH Process. Fuel 2013, 108, 254–260. DOI: 10.1016/j.fuel.2013.02.062.
  • Adewuyi, Y. G.; Khan, M. A.; Sakyi, N. Y. Kinetics and Modeling of the Removal of Nitric Oxide by Aqueous Sodium Persulfate Simultaneously Activated by Temperature and Fe2+. Ind. Eng. Chem. Res. 2014, 53, 828–839. DOI: 10.1021/ie402801b.
  • Hikita, H.; Asai, S.; Takatsuka, T. Absorption of Carbon Dioxide into Aqueous Sodium Hydroxide and Sodium Carbonate-Bicarbonate Solutions.Chem. Eng. J. 1976, 11, 131–141. DOI: 10.1016/S0300-9467(76)80035-4.
  • Neufeld, P. D.; Janzen, A. R.; Aziz, R. A. Empirical Equations to Calculate 16 of the Transport Collision Integrals Ω(l, s) *. For the Lennard-Jones (12-6) Potential.J. Chem. Phys. 1972, 57, 1100–1102. DOI: 10.1063/1.1678363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.