Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 58, 2023 - Issue 8
142
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater

ORCID Icon, & ORCID Icon
Pages 738-761 | Received 02 Feb 2023, Accepted 10 May 2023, Published online: 26 May 2023

References

  • Pavithra, K. G.; P, S. K.; V, J.; P, S. R. Removal of Colorants from Wastewater: A Review on Sources and Treatment Strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. DOI: 10.1016/j.jiec.2019.02.011.
  • (a) Martı’nez-Huitle, C. A.; Brillas, E. Decontamination of Wastewaters Containing S ynthetic Organic Dyes by Electrochemical Methods: A General Review, Appl. Catal. B, 2009, 87, 105–145. DOI: 10.1016/j.apcatb.2008.09.017. (b) Wang, Z.; Zhai, S.; Lv, J.; Qi, H.; Zheng, W.; Zhai, B.; An, Q. Versatile Hierarchical Cu/Fe3O4 Nanocatalysts for Efficient Degradation of Organic Dyes Prepared by a Facile, Controllable Hydrothermal Method, RSC Adv. 2015, 5, 74575–74584. DOI: 10.1039/C5RA16027H.
  • Katheresan, V.; Kansedo, J.; Lau, S. Y. Efficiency of Various Recent Wastewater Dye Removal Methods: A Review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. DOI: 10.1016/j.jece.2018.06.060.
  • Ahmed Zelekew, O.; Kuo, D. H. A Two-Oxide Nanodiode System Made of Double-Layered p-Type Ag2O@ n-Type TiO2 for Rapid Reduction of 4-Nitrophenol. Phys. Chem. Chem. Phys. 2016, 18, 4405–4414. DOI: 10.1039/c5cp07320k.
  • Naseem, K.; Farooqi, Z. H.; Begum, R.; Irfan, A. Removal of Congo Red Dye from Aqueous Medium by Its Catalytic Reduction Using Sodium Borohydride in the Presence of Various Inorganic Nano-Catalysts: A Review. J. Cleaner Prod. 2018, 187, 296–307. DOI: 10.1016/j.jclepro.2018.03.209.
  • Narband, N.; Uppal, M.; Dunnill, C. W.; Hyett, G.; Wilson, M.; Parkin, I. P. The Interaction between Gold Nanoparticles and Cationic and Anionic Dyes: Enhanced UV-Visible Absorption. Phys. Chem. Chem. Phys. 2009, 11, 10513–10518. DOI: 10.1039/b909714g.
  • Wang, Y.; Gong, Y.; Lin, N.; Yu, L.; Du, B.; Zhang, X. Enhanced Removal of Cr (VI) from Aqueous Solution by Stabilized Nanoscale Zero Valent Iron and Copper Bimetal Intercalated Montmorillonite. J. Colloid Interface Sci. 2022, 606, 941–952. DOI: 10.1016/j.jcis.2021.08.075.
  • Maamoun, I.; Eljamal, O.; Khalil, A. M.; Sugihara, Y.; Matsunaga, N. Phosphate Removal through Nano-Zero-Valent Iron Permeable Reactive Barrier; Column Experiment and Reactive Solute Transport Modeling. Transp. Porous Med. 2018, 125, 395–412. DOI: 10.1007/s11242-018-1124-0.
  • Pasinszki, T.; Krebsz, M. Synthesis and Application of Zero-Valent Iron Nanoparticles in Water Treatment, Environmental Remediation, Catalysis, and Their Biological Effects. Nanomater 2020, 10, 917. DOI: 10.3390/nano10050917.
  • Yirsaw, B. D.; Megharaj, M.; Chen, Z.; Naidu, R. Environmental Application and Ecological Significance of Nano-Zero Valent Iron. J. Environ. Sci. (China) 2016, 44, 88–98. DOI: 10.1016/j.jes.2015.07.016.
  • Yang, Y.; Ji, W.; Li, X.; Lin, H.; Chen, H.; Bi, F.; Zheng, Z.; Xu, J.; Zhang, X. Insights into the Mechanism of Enhanced Peroxymonosulfate Degraded Tetracycline Using Metal Organic Framework Derived Carbonyl Modified Carbon-Coated Fe0. J. Hazard. Mater. 2022, 424, 127640. DOI: 10.1016/j.jhazmat.2021.127640.
  • Phenrat, T.; Saleh, N.; Sirk, K.; Tilton, R. D.; Lowry, G. V. Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions. Environ. Sci. Technol. 2007, 41, 284–290. DOI: 10.1021/es061349a.
  • Zhang, X.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Kaolinite-Supported Nanoscale Zero-Valent Iron for Removal of Pb2+ from Aqueous Solution: Reactivity, Characterization and Mechanism. Water Res. 2011, 45, 3481–3488. DOI: 10.1016/j.watres.2011.04.010.
  • Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Multifunctional Kaolinite Supported Nanoscale Zero-Valent Iron Used for the Adsorption and Degradation of Crystal Violet in Aqueous Solution. J. Colloid Interface Sci. 2013, 398, 59–66. DOI: 10.1016/j.jcis.2013.02.020.
  • Diao, Z. H.; Xu, X. R.; Jiang, D.; Kong, L. J.; Sun, Y. X.; Hu, Y. X.; Hao, Q. W.; Chen, H. Bentonite-Supported Nanoscale Zero-Valent Iron/Persulfate System for the Simultaneous Removal of Cr (VI) and Phenol from Aqueous Solutions. Chem. Eng. J. 2016, 302, 213–222. DOI: 10.1016/j.cej.2016.05.062.
  • Xu, H.; Zhang, Y.; Cheng, Y.; Tian, W.; Zhao, Z.; Tang, J. Polyaniline/Attapulgite-Supported Nanoscale Zero-Valent Iron for the Rival Removal of Azo Dyes in Aqueous Solution. Adsorpt. Sci. Technol. 2019, 37, 217–235. DOI: 10.1177/0263617418822917.
  • Bhaumik, M.; Choi, H. J.; Mccrindle, R. I.; Maity, A. Composite Nanofibers Prepared from Metallic Iron Nanoparticles and Polyaniline: High Performance for Water Treatment Applications. J. Colloid. Interface Sci. 2014, 425, 75–82. DOI: 10.1016/j.jcis.2014.03.031.
  • Giri, S.; Bhaumik, M.; Das, R.; Gupta, V. K.; Maity, A. Dehalogenation of Aromatic Halides by Polyaniline/Zero-Valent Iron Composite Nanofiber: Kinetics and Mechanisms. Appl. Catal. B Environ. 2017, 202, 207–216. DOI: 10.1016/j.apcatb.2016.09.027.
  • Wang, W.; Li, S.; Lei, H.; Pan, B.; Zhang, W. X. Enhanced Separation of Nanoscale Zerovalent Iron (nZVI) Using Polyacrylamide: Performance, Characterization and Implication. Chem. Eng. J. 2015, 260, 616–622. DOI: 10.1016/j.cej.2014.09.042.
  • Sun, H.; Zhou, G.; Liu, S.; Ang, H. M.; Tadé, M. O.; Wang, S. Nano-Fe0 Encapsulated in Microcarbon Spheres: Synthesis, Characterization, and Environmental Applications. ACS Appl. Mater. Interfaces 2012, 4, 6235–6241. DOI: 10.1021/am301829u.
  • Wang, Y.; Sun, H.; Duan, X.; Ang, H. M.; Tadé, M. O.; Wang, S. A New Magnetic Nano Zero-Valent Iron Encapsulated in Carbon Spheres for Oxidative Degradation of Phenol. Appl. Catal. B Environ. 2015, 172–173, 73–81. DOI: 10.1016/j.apcatb.2015.02.016.
  • Mukhopadhyay, A.; Joshi, N.; Chattopadhyay, K.; De, G. A Facile Synthesis of PEG-Coated Magnetite (Fe3O4) Nanoparticles and Their Prevention of the Reduction of Cytochrome C. ACS Appl. Mater. Interfaces 2012, 4, 142–149. DOI: 10.1021/am201166m.
  • Keihan, A. H.; Veisi, H.; Biabri, P. M. Facile Synthesis of PEG-Coated Magnetite (Fe3O4) and Embedment of Gold Nanoparticle as a Nontoxic Antimicrobial Agent. Appl. Organometal. Chem. 2017, 31, e3873. DOI: 10.1002/aoc.3873.
  • Tian, H.; Liang, Y.; Zhu, T.; Zeng, X.; Sun, Y. Surfactant-Enhanced PEG-4000-NZVI for Remediating Trichloroethylene-Contaminated Soil. Chemosphere 2018, 195, 585–593. DOI: 10.1016/j.chemosphere.2017.12.070.
  • Nikam, D. S.; Jadhav, S. V.; Khot, V. M.; Ningthoujam, R. S.; Hong, C. K.; Mali, S. S.; Pawar, S. H. Colloidal Stability of Polyethylene Glycol Functionalized Co0.5Zn0.5Fe2O4 Nanoparticles: Effect of pH, Sample and Salt Concentration for Hyperthermia Application. RSC Adv. 2014, 4, 12662–12671. DOI: 10.1039/c3ra47319h.
  • Jiang, Y.; Lodge, T. P.; Reineke, T. M. Packaging pDNA by Polymeric ABC Micelles Simultaneously Achieves Colloidal Stability and Structural Control. J. Am. Chem. Soc. 2018, 140, 11101–11111. DOI: 10.1021/jacs.8b06309.
  • Jackson, M. A.; Werfel, T. A.; Curvino, E. J.; Yu, F.; Kavanaugh, T. E.; Sarett, S. M.; Dockery, M. D.; Kilchrist, K. V.; Jackson, A. N.; Giorgio, T. D.; Duvall, C. L. Zwitterionic Nanocarrier Surface Chemistry Improves siRNA Tumor Delivery and Silencing Activity Relative to Polyethylene Glycol. ACS Nano 2017, 11, 5680–5696. DOI: 10.1021/acsnano.7b01110.
  • Godinho, B. M. D. C.; Ogier, J. R.; Quinlan, A.; Darcy, R.; Griffin, B. T.; Cryan, J. F.; O’Driscoll, C. M. PEGylated Cyclodextrins as Novel siRNA Nanosystems: Correlations between Polyethylene Glycol Length and Nanoparticle Stability. Int. J. Pharm. 2014, 473, 105–112. DOI: 10.1016/j.ijpharm.2014.06.054.
  • (a) Jochem, A. R.; Ankah, G. N.; Meyer, L. A.; Elsenberg, S.; Johann, C.; Kraus, T. Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation. Anal. Chem. 2016, 88, 10065–10073. DOI: 10.1021/acs.analchem.6b02397. (b) Tehrani, S. F.; Bernard-Patrzynski, F.; Puscas, I.; Leclair, G.; Hildgen, P.; Roullin, V. G. Length of Surface PEG Modulates Nanocarrier Transcytosis across Brain Vascular Endothelial Cells, Nanomedicine, 2019, 16, 185–194. DOI: 10.1016/j.nano.2018.11.016.
  • Sanchez-Cano, C.; Carril, M. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces. Int. J. Mol. Sci. 2020, 21, 2–24. DOI: 10.3390/ijms21031007.
  • Ergüt, M.; Uzunoğlu, D.; Özer, A. Efficient Decolourization of Malachite Green with Biosynthesized Iron Oxide Nanoparticles Loaded Carbonated Hydroxyapatite as a Reusable Heterogeneous Fenton-like Catalyst. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2019, 54, 786–800. DOI: 10.1080/10934529.2019.1596698.
  • Chen, Y.; Lin, Z.; Hao, R.; Xu, H.; Huang, C. Rapid Adsorption and Reductive Degradation of Naphthol Green B from Aqueous Solution by Polypyrrole/Attapulgite Composites Supported Nanoscale Zero-Valent Iron. J. Hazard. Mater. 2019, 371, 8–17. DOI: 10.1016/j.jhazmat.2019.02.096.
  • Sallam, S. A.; El-Subruiti, G. M.; Eltaweil, A. S. Facile Synthesis of Ag–γ-Fe2O3 Superior Nanocomposite for Catalytic Reduction of Nitroaromatic Compounds and Catalytic Degradation of Methyl Orange. Catal. Lett. 2018, 148, 3701–3714. DOI: 10.1007/s10562-018-2569-z.
  • El-Subruiti, G. M.; Eltaweil, A. S.; Sallam, S. A. Synthesis of Active MFe2O4/γ-Fe2O3 Nanocomposites (Metal = Ni or Co) for Reduction of Nitro-Containing Pollutants and Methyl Orange Degradation. Nano Brief Rep. Rev. 2019, 14, 1950125. DOI: 10.1142/S179329201950125X.
  • Shukla, F.; Kikani, T.; Khan, A.; Thakore, S. α-Hydroxy Acids Modified β-Cyclodextrin Capped Iron Nanocatalyst for Rapid Reduction of Nitroaromatics: A Sonochemical Approach. Int. J. Biol. Macromol. 2022, 209, 1504–1515. DOI: 10.1016/j.ijbiomac.2022.04.149.
  • Rashid, T.; Iqbal, D.; Hazafa, A.; Hussain, S.; Sher, F.; Sher, F. Formulation of Zeolite Supported Nano-Metallic Catalyst and Applications in Textile Effluent Treatment. J. Environ. Chem. Eng. 2020, 8, 104023. DOI: 10.1016/j.jece.2020.104023.
  • Ghosh, A.; Dutta, S.; Mukherjee, I.; Biswas, S.; Chatterjee, S.; Saha, R. Template-Free Synthesis of Flower-Shaped Zero-Valent Iron Nanoparticle: Role of Hydroxyl Group in Controlling Morphology and Nitrate Reduction. Adv. Powder Technol. 2017, 28, 2256–2264. DOI: 10.1016/j.apt.2017.06.006.
  • Langford, J. I.;Wilson, A. J. C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. DOI: 10.1107/S0021889878012844.
  • Dongol, M.; El-Denglawey, A.; Abd El Sadek, M. S.; Yahia, I. S. Thermal Annealing Effect on the Structural and the Optical Properties of Nano CdTe Films. Optik 2015, 126, 1352–1357. DOI: 10.1016/j.ijleo.2015.04.048.
  • Aleboyeh, A.; Olya, M. E.; Aleboyeh, H. Electrical Energy Determination for an Azo Dye Decolorization and Mineralization by UV/H2O2 Advanced Oxidation Process. Chem. Eng. J. 2008, 137, 518–524. DOI: 10.1016/j.cej.2007.05.016.
  • Lu, L.; Ai, Z.; Li, J.; Zheng, Z.; Li, Q.; Zhang, L. Synthesis and Characterization of Fe − Fe2O3 Core − Shell Nanowires and Nanonecklaces. Cryst. Growth Des. 2007, 7, 459–464. DOI: 10.1021/cg060633a.
  • Jiang, D.; Huang, D.; Lai, C.; Xu, P.; Zeng, G.; Wan, J.; Tang, L.; Dong, H.; Huang, B.; Hu, T. Difunctional Chitosan-Stabilized Fe/Cu Bimetallic Nanoparticles for Removal of Hexavalent Chromium Wastewater. Sci. Total Environ. 2018, 644, 1181–1189. DOI: 10.1016/j.scitotenv.2018.06.367.
  • Wang, X.; Liu, P.; Fu, M.; Ma, J.; Ning, P. Novel Sequential Process for Enhanced Dye Synergistic Degradation Based on Nano Zero-Valent Iron and Potassium Permanganate. Chemosphere 2016, 155, 39–47. DOI: 10.1016/j.chemosphere.2016.04.022.
  • Pasinszki, T.; Krebsz, M.; Kótai, L.; Sajó, I. E.; Homonnay, Z.; Kuzmann, E.; Kiss, L. F.; Váczi, T.; Kovács, I. Nanofurry Magnetic Carbon Microspheres for Separation Processes and Catalysis: Synthesis, Phase Composition, and Properties. J. Mater. Sci. 2015, 50, 7353–7363. DOI: 10.1007/s10853-015-9292-6.
  • Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R. Correlation between Crystallite Size and Photocatalytic Performance of Micrometer-Sized Monoclinic WO3 Particles. Arabian J. Chem. 2020, 13, 1283–1296. DOI: 10.1016/j.arabjc.2017.10.010.
  • Yi, K. X.; Fan, Z. X.; Tang, J. P.; Chen, A. W.; Shao, J. H.; Peng, L.; Zeng, Q. R.; Luo, S. The Elucidation of Surrounding Alginate Gels on the Pollutants Degradation by Entrapped Nanoscale Zero-Valent Iron. Colloid. Surf. B Biointerfaces 2018, 171, 233–240. DOI: 10.1016/j.colsurfb.2018.07.033.
  • Zhang, M.; Yi, K.; Zhang, X.; Han, P.; Liu, W.; Tong, M. Modification of Zero Valent Iron Nanoparticles by Sodium Alginate and Bentonite: Enhanced Transport, Effective Hexavalent Chromium Removal and Reduced Bacterial Toxicity. J. Hazard. Mater. 2020, 388, 121822. DOI: 10.1016/j.jhazmat.2019.121822.
  • Wang, S.; Zhong, D.; Xu, Y.; Zhong, N. Polyethylene Glycol-Stabilized Bimetallic Nickel–Zero Valent Iron Nanoparticles for Efficient Removal of Cr (vi). New J. Chem. 2021, 45, 13969–13978. DOI: 10.1039/D1NJ03122H.
  • Maity, D.; Agrawal, D. C. Synthesis of Iron Oxide Nanoparticles under Oxidizing Environment and Their Stabilization in Aqueous and Non-Aqueous Media. J. Magn. Magn. Mater. 2007, 308, 46–55. DOI: 10.1016/j.jmmm.2006.05.001.
  • McIntyre, N.; Zetaruk, D. X-Ray Photoelectron Spectroscopic Studies of Iron Oxides. Anal. Chem. 1977, 49, 1521–1529. DOI: 10.1021/ac50019a016.
  • Sun, Y.; Iris, K. M.; Tsang, D. C.; Cao, X.; Lin, D.; Wang, L.; Graham, N. J. D.; Alessi, D. S.; Komàrek, M.; Ok, Y. S.; et al. Multifunctional Iron-Biochar Composites for the Removal of Potentially Toxic Elements, Inherent Cations, and Hetero-Chloride from Hydraulic Fracturing Wastewater. Environ. Int. 2019, 124, 521–532. DOI: 10.1016/j.envint.2019.01.047.
  • Tang, L.; Feng, H.; Tang, J.; Zeng, G.; Deng, Y.; Wang, J.; Liu, Y.; Zhou, Y. Treatment of Arsenic in Acid Wastewater and River Sediment by Fe@Fe2O3 Nanobunches: The Effect of Environmental Conditions and Reaction Mechanism. Water Res. 2017, 117, 175–186. DOI: 10.1016/j.watres.2017.03.059.
  • Abdelfatah, A. M.; Fawzy, M.; El-Khouly, M. E.; Eltaweil, A. S. Efficient Adsorptive Removal of Tetracycline from Aqueous Solution Using Phytosynthesized Nano-Zero Valent Iron. J. Saudi Chem. Soc. 2021, 25, 101365. DOI: 10.1016/j.jscs.2021.101365.
  • Wu, H.; Wei, W.; Xu, C.; Meng, Y.; Bai, W.; Yang, W.; Lin, A. Polyethylene Glycol-Stabilized Nano Zero-Valent Iron Supported by Biochar for Highly Efficient Removal of Cr (VI). Ecotoxicol. Environ. Saf. 2020, 188, 109902. DOI: 10.1016/j.ecoenv.2019.109902.
  • Jia, T.; Zhang, B.; Huang, L.; Wang, S.; Xu, C. Enhanced Sequestration of Cr(VI) by Copper Doped Sulfidated Zerovalent Iron (SZVI-Cu): Characterization, Performance, and Mechanisms. Chem. Eng. J. 2019, 366, 200–207. DOI: 10.1016/j.cej.2019.02.058.
  • Doong, R. A.; Lee, C. C.; Lien, C. M. Enhanced Dechlorination of Carbon Tetrachloride by Geobacter sulfurreducens in the Presence of Naturally Occurring Quinones and Ferrihydrite. Chemosphere 2014, 97, 54–63. DOI: 10.1016/j.chemosphere.2013.11.004.
  • Zhou, V.; Lan, J.; Liu, G.; Deng, K.; Yang, Y.; Nie, G.; Yu, J.; Zhi, L. Angew. Facet-Mediated Photodegradation of Organic Dye over Hematite Architectures by Visible Light. Angew. Chem. Int. Ed. Engl. 2012, 51, 178–182. DOI: 10.1002/anie.201105028.
  • Fang, Y.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Mesoporous Amorphous FePO4 Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries. Nano Lett. 2014, 14, 3539–3543. DOI: 10.1021/nl501152f.
  • Roy, M.; Ghosh, S.; Naskar, M. K. Ligand-Assisted Soft-Chemical Synthesis of Self-Assembled Different Shaped Mesoporous Co3O4: Efficient Visible Light Photocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 10160–10169. DOI: 10.1039/c5cp00649j.
  • Wang, L.; Li, J.; Wang, Z.; Zhao, L.; Jiang, Q. Low-Temperature Hydrothermal Synthesis of α-Fe/Fe3O4 Nanocomposite for Fast Congo Red Removal. Dalton Trans. 2013, 42, 2572–2579. DOI: 10.1039/c2dt32245e.
  • Ganapuram, B. R.; Alle, M.; Dadigala, R.; Dasari, A.; Maragoni, V.; Guttena, V. Catalytic Reduction of Methylene Blue and Congo Red Dyes Using Green Synthesized Gold Nanoparticles Capped by Salmalia Malabarica Gum. Int. Nano Lett. 2015, 5, 215–222. DOI: 10.1007/s40089-015-0158-3.
  • Çelikkan, H.; Şahin, M.; Aksu, M. L.; Nejat Veziroğlu, T. The Investigation of the Electrooxidation of Sodium Borohydride on Various Metal Electrodes in Aqueous Basic Solutions. Int. J. Hydrog. Energy 2007, 32, 588–593. DOI: 10.1016/j.ijhydene.2006.06.065.
  • Costa, M. C.; Mota, F. S. B.; Santos, A. B. D.; Mendonça, G. L. F.; Nascimento, R. F. d Effect of Dye Structure and Redox Mediators on Anaerobic Azo and Anthraquinone Dye Reduction. Quím. Nova 2012, 35, 482–486. DOI: 10.1590/S0100-40422012000300008.
  • Wu, G.; Liu, X.; Zhou, P.; Wang, L.; Hegazy, M.; Huang, X.; Huang, Y. A Facile Approach for the Reduction of 4-Nitrophenol and Degradation of Congo Red Using Gold Nanoparticles or Laccase Decorated Hybrid Inorganic Nanoparticles/Polymer-Biomacromolecules Vesicles. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 524–533. DOI: 10.1016/j.msec.2018.09.061.
  • Ozer, A.; Akkaya, G.; Turabik, M. The Biosorption of Acid Red 337 and Acid Blue 324 on Enteromorpha Prolifera: The Application of Nonlinear Regression Analysis to Dye biosorptionChem. Eng. J. 2005, 112, 181–190. DOI: 10.1016/j.cej.2005.07.007.
  • Gupta, S.; Giordano, C.; Gradzielski, M.; Mehta, S. K. Microwave-Assisted Synthesis of Small Ru Nanoparticles and Their Role in Degradation of Congo Red. J. Colloid Interface Sci. 2013, 411, 173–181. DOI: 10.1016/j.jcis.2013.08.030.
  • Wang, Y.; Gong, Y.; Lin, N.; Jiang, H.; Wei, X.; Liu, N.; Zhang, X. Cellulose Hydrogel Coated Nanometer Zero-Valent Iron Intercalated Montmorillonite (CH-MMT-nFe0) for Enhanced Reductive Removal of Cr (VI): Characterization, Performance, and Mechanisms. J. Mol. Liq. 2022, 347, 118355. DOI: 10.1016/j.molliq.2021.118355.
  • (a) Meena, R.C.; Pachwarya, R.B. Photo Catalytic Degradation of Model Textile Azo Dyes in Textile Wastewater Using Methylene Blue Immobilized Resin Dowex-11, J. Sci. Ind. Res. 2007, 14,184–190. (b) Shimizu, N.; Ogino, C.; Dadjour, M.F.; Murata, T. Sonocatalytic Degradation of Methylene Blue with TiO2 Pellets in Water, J. Ultrason. Sonochem., 2007, 14, 184–190. DOI: 10.1016/j.ultsonch.2006.04.002.
  • Pisitsak, P.; Chamchoy, K.; Chinprateep, V.; Khobthong, W.; Chitichotpanya, P.; Ummartyotin, S. Synthesis of Gold Nanoparticles Using Tannin-Rich Extract and Coating onto Cotton Textiles for Catalytic Degradation of Congo Red. J. Nanotechnol. 2021, 2021, 1–7. DOI: 10.1155/2021/6380283.
  • Guillard, C.; Puzenat, E.; Lachheb, H.; Houas, A.; Herrmann, J. M. Why Inorganic Salts Decrease the TiO2 Photocatalytic Efficiency. Int. J. Photoenergy 2005, 7, 1–9. DOI: 10.1155/S1110662X05000012.
  • Jiang, Z. J.; Liu, C. Y.; Sun, L. W. Catalytic Properties of Silver Nanoparticles Supported on Silica Spheres. J. Phys. Chem. B 2005, 109, 1730–1735. DOI: 10.1021/jp046032g.
  • Jaafarzadeh, N.; Takdastan, A.; Jorfi, S.; Ghanbari, F.; Ahmadi, M.; Barzegar, G. The Performance Study on Ultrasonic/Fe3O4/H2O2 for Degradation of Azo Dye and Real Textile Wastewater Treatment. J. Mol. Liq. 2018, 256, 462–470. DOI: 10.1016/j.molliq.2018.02.047.
  • Colbea, C.; Oancea, P.; Puiu, M.; Galaon, T.; Raducan, A. Reusable Hybrid Nanocomposites for Clean Degradation of Dye Waste under Visible Light. Mater. Today Commun. 2022, 30, 103091. DOI: 10.1016/j.mtcomm.2021.103091.
  • Krishnamoorthy, R.; Jose, P. A.; Ranjith, M.; Anandham, R.; Suganya, K.; Prabhakaran, J.; Thiyageshwari, S.; Johnson, J.; Gopal, N. O.; Kumutha, K. Decolourisation and Degradation of Azo Dyes by Mixed Fungal Culture Consisted of Dichotomomyces Cejpii MRCH 1-2 and Phoma Tropica MRCH 1-3. Environ. Chem. Eng. 2018, 6, 588–595. DOI: 10.1016/j.jece.2017.12.035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.