Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 59, 2024 - Issue 5
64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Green synthesis of gold nanoparticles via Moringa oleifera seed extract: antioxidant, antibacterial and anticarcinogenic activity on lung cancer

, , , , , & show all
Pages 231-240 | Received 11 Jan 2024, Accepted 07 Jun 2024, Published online: 16 Jun 2024

References

  • Si; K. Pal, A.; Kralj; G, S.; El-Sayyad, S.; de Souza, F. G.; Narayanan, T. Sustainable Preparation of Gold Nanoparticles via Green Chemistry Approach for Biogenic Applications. Mater. Today Chem. 2020, 17, 100327. DOI: 10.1016/j.mtchem.2020.100327.
  • Contera, S.; De La Serna, J. B.; Tetley, T. D. Biotechnology, Nanotechnology and Medicine. Emerg. Top. Life Sci. 2021, 4, 551–554. DOI: 10.1042/ETLS20200350.
  • Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S. M.; et al. Green Nanotechnology: A Review on Green Synthesis of Silver Nanoparticles—An Ecofriendly Approach. Int. J. Nanomedicine 2019, 14, 5087–5107. DOI: 10.2147/IJN.S200254.
  • Jamkhande; N, P. G.; Ghule; A, W.; Bamer; M, H.; Kalaskar, G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. DOI: 10.1016/j.jddst.2019.101174.
  • Khan, S.; Mansoor, S.; Rafi, Z.; Kumari, B.; Shoaib, A.; Saeed, M.; Alshehri, S.; Ghoneim, M. M.; Rahamathulla, M.; Hani, U.; et al. A Review on Nanotechnology: Properties, Applications, and Mechanistic Insights of Cellular Uptake Mechanisms. J. Mol. Liq. 2022, 348, 118008. DOI: 10.1016/j.molliq.2021.118008.
  • Verma, A.; Gautam, S.; Bansal, K.; Prabhakar, N.; Rosenholm, J. Green Nanotechnology: Advancement in Phytoformulation Research. Medicines (Basel) 2019, 6, 39. DOI: 10.3390/medicines6010039.
  • Rafique, M.; Sadaf, I.; Rafique, M. S.; Tahir, M. B. A Review on Green Synthesis of Silver Nanoparticles and Their Applications. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1272–1291. DOI: 10.1080/21691401.2016.1241792.
  • Gour, A.; Jain, N. K. Advances in Green Synthesis of Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. DOI: 10.1080/21691401.2019.1577878.
  • Akhtar, M. S.; Panwar, J.; Yun, Y. S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustain. Chem. Eng. 2013, 6, 591–602. DOI: 10.1021/sc300118u.
  • Herizchi, R.; Abbasi, E.; Milani, M.; Akbarzadeh, A. Current Methods for Synthesis of Gold Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016, 44, 596–602. DOI: 10.3109/21691401.2014.971807.
  • Zare, I.; Yaraki, M. T.; Speranza, G.; Najafabadi, A. H.; Shourangiz-Haghighi, A.; Nik, A. B.; Manshian, B. B.; Saraiva, C.; Soenen, S. J.; Kogan, M. J.; et al. Gold Nanostructures: Synthesis, Properties, and Neurological Applications. Chem. Soc. Rev. 2022, 51, 2601–2680. DOI: 10.1039/d1cs01111a.
  • Boruah, J. S.; Devi, C.; Hazarika, U.; Bhaskar Reddy, P. V.; Chowdhury, D.; Barthakur, M.; Kalita, P. Green Synthesis of Gold Nanoparticles Using an Antiepileptic Plant Extract: In Vitro Biological and Photo-Catalytic Activities. RSC Adv. 2021, 11, 28029–28041. DOI: 10.1039/d1ra02669k.
  • Kiran, M. S.; Rajith Kumar, C. R.; Shwetha, U. R.; Onkarappa, H. S.; Betageri, V. S.; Latha, M. S. Green Synthesis and Characterization of Gold Nanoparticles from Moringa Oleifera Leaves and Assessment of Antioxidant, Antidiabetic and Anticancer Properties. Chem. Data Collect. 2021, 33, 100714. DOI: 10.1016/j.cdc.2021.100714.
  • Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar; R. Kumari, S.; Dhaka, N. Potential Applications of Antioxidants – A Review. J. Pharm. Res. 2013, 9, 828–835. DOI: 10.1016/j.jopr.2013.10.001.
  • Ibrahim, A.; Abdul, A. Application of Symthesis of Nanoparticles: A Review. J. Teknol. 2017, 5, 1–5.
  • Anand, K.; Gengan, R. M.; Phulukdaree, A.; Chuturgoon, A. Agroforestry Waste Moringa Oleifera Petals Mediated Green Synthesis of Gold Nanoparticles and Their anti-Cancer and Catalytic Activity. J. Ind. Eng. Chem. 2015, 21, 1105–1111. DOI: 10.1016/j.jiec.2014.05.021.
  • Jadhav, V.; Bhagare, A.; Ali, I. H.; Dhayagude, A.; Lokhande, D.; Aher, J.; Jameel, M.; Dutta, M. Role of Moringa Oleifera on Green Synthesis of Metal/Metal Oxide Nanomaterials. J. Nanomater. 2022, 2022, 1–10. DOI: 10.1155/2022/2147393.
  • Pande, J.; Chanda, S. Screening of Anticancer Properties of Some Medicinal Plants – Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1348–1362. DOI: 10.20546/ijcmas.2020.903.157.
  • Saini, R. K.; Sivanesan, I.; Keum, Y. S. Phytochemicals of Moringa oleifera: A Review of Their Nutritional, Therapeutic and Industrial Significance. 3 Biotech 2016, 6, 203. DOI: 10.1007/s13205-016-0526-3.
  • Stohs, S. J.; Hartman, M. J. Review of the Safety and Efficacy of Moringa oleifera. Phytother. Res. 2015, 29, 796–804. DOI: 10.1002/ptr.5325.
  • Hern, A. O. Reforma del Artículo 27 Constitucional: Análisis de los argumentos, 2015.
  • Ramachandran, C.; Peter, K. V.; Gopalakrishnan, P. K. Drumstick (Moringa oleifera): A Multipurpose Indian Vegetable. Econ. Bot. 1980, 34, 276–283. DOI: 10.1007/BF02858648.
  • Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Moringa oleifera Seeds and Oil: Characteristics and Uses for Human Health. Int. J. Mol. Sci. 2016, 17, 2141. DOI: 10.3390/ijms17122141.
  • Perez-Perez, L. M.; Huerta-Ocampo, J. Á.; Ruiz-Cruz, S.; Cinco-Moroyoqui, F. J.; Wong-Corral, F. J.; Rascón-Valenzuela, L. A.; Robles-García, M. A.; González-Vega, R. I.; Rosas-Burgos, E. C.; Corella-Madueño, M. A. G.; et al. Evaluation of Quality, Antioxidant Capacity, and Digestibility of Chickpea (Cicer arietinum l. cv Blanoro) Stored under N2 and CO2 Atmospheres. Molecules 2021, 26, 2773. DOI: 10.3390/molecules26092773.
  • Benítez-Estrada, A.; Villanueva-Sánchez, J.; González-Rosendo, G.; Alcántar-Rodríguez, V. E.; Puga-Díaz, R.; Quintero-Gutiérrez, A. G. Determinación de la capacidad antioxidante total de alimentos y plasma humano por fotoquimioluminiscencia: Correlación con ensayos fluorométricos (ORAC) y espectrofotométricos (FRAP). Tip RECQB 2020, 23, 1–9. DOI: 10.22201/fesz.23958723e.2020.0.244.
  • Bouttier-Figueroa, D. C.; Sotelo-Lerma, M. Fabrication and Characterization of an Eco-Friendly Antibacterial Nanocomposite of Galactomannan/ZnO by in Situ Chemical co-Precipitation Method. Compos. Interfaces 2019, 26, 83–95. DOI: 10.1080/09276440.2018.1472457.
  • Rascón Valenzuela, L. A.; Jiménez Estrada, M.; Velázquez Contreras, C. A.; Garibay Escobar, A.; Medina Juárez, L. A.; Gámez Meza, N.; Robles Zepeda, R. E. Antiproliferative and Apoptotic Activities of Extracts of Asclepias subulate. Pharm. Biol. 2015, 53, 1741–1751. DOI: 10.3109/13880209.2015.1005752.
  • Noruzi, M.; Zare, D.; Khoshnevisan, K.; Davoodi, D. Rapid Green Synthesis of Gold Nanoparticles Using Rosa hybrida Petal Extract at Room Temperature. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 79, 1461–1465. DOI: 10.1016/j.saa.2011.05.001.
  • Nasrollahzadeh; S, M.; Sajadi, M.; Maham, M. Green Synthesis of Palladium Nanoparticles Using Hippophae rhamnoides Linn Leaf Extract and Their Catalytic Activity for the Suzuki-Miyaura Coupling in Water. J. Mol. Catal. A Chem. 2015, 396, 297–303. DOI: 10.1016/j.molcata.2014.10.019.
  • Yasmin, A.; Ramesh, K.; Rajeshkumar, S. Optimization and Stabilization of Gold Nanoparticles by Using Herbal Plant Extract with Microwave Heating. Nano Converg. 2014, 1, 12. DOI: 10.1186/s40580-014-0012-8.
  • Suriyakala, G.; et al. Green Synthesis of Gold Nanoparticles Using Jatropha integerrima Jacq. flower Extract and Their Antibacterial Activity. J. King Saud. Univ. Sci. 2022, 34, 101830. DOI: 10.1016/j.jksus.2022.101830.
  • Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M.; et al. Phyto-Engineered Gold Nanoparticles (AuNPs) with Potential Antibacterial, Antioxidant, and Wound Healing Activities under in Vitro and in Vivo Conditions. Int. J. Nanomedicine 2020, 15, 7553–7568. DOI: 10.2147/IJN.S257499.
  • Katata-Seru, L.; Moremedi; O, T.; Aremu, S.; Bahadur, I. Green Synthesis of Iron Nanoparticles Using Moringa oleifera Extracts and Their Applications: Removal of Nitrate from Water and Antibacterial Activity against Escherichia coli. J. Mol Liq. 2018, 256, 296–304. DOI: 10.1016/j.molliq.2017.11.093.
  • Araujo, L. A.; Bezerra, C. O.; Cusioli, L. F.; Silva, M. F.; Nishi, L.; Gomes, R. G.; Bergamasco, R. Moringa oleifera Biomass Residue for the Removal of Pharmaceuticals from Water. J. Environ. Chem. Eng. 2018, 6, 6, 7192–7199. DOI: 10.1016/j.jece.2018.11.016.
  • Calderón-Ayala, G.; Cortez-Valadez, M.; Martínez-Núñez, C. E.; Flores-Acosta, M. FLG/Silver Nanoparticles: Nanocomposite by Green Synthesis. Diam. Relat. Mater. 2020, 101, 107618. DOI: 10.1016/j.diamond.2019.107618.
  • Malaikozhundan, B.; Krishnamoorthi, R.; Vinodhini, J.; Nambi, K. S. N.; Palanisamy, S. Multifunctional Iron Oxide Nanoparticles Using Carica papaya Fruit Extract as Antibacterial, Antioxidant and Photocatalytic Agent to Remove Industrial Dyes. Inorg. Chem. Commun. 2022, 144, 109843. DOI: 10.1016/j.inoche.2022.109843.
  • Serrano-Niño, J. C.; Contreras-Martínez, C. A.; Pacheco; A, J. R. S.; Ojeda; B, Z.; Uscanga, R. A.; Cavazos-Garduño, A. Optimization of the Biosynthesis of Gold Nanoparticles Using Hypericum perforatum and Evaluation of Their Antimicrobial Activity. Rev. Mex. Ingen. Quim. 2020, 19, 889–902. DOI: 10.24275/rmiq/Bio790.
  • Varsani, V.; Vyas, S. J.; Dudhagara, D. R. Development of Bio-Based Material from the Moringa oleifera and Its Bio-Coagulation Kinetic Modeling–a Sustainable Approach to Treat the Wastewater. Heliyon 2022, 8, e10447. DOI: 10.1016/j.heliyon.2022.e10447.
  • Moodley, J. S., Krishna, S. B. N., Pillay, K., Govender, P., Sershen. Green Synthesis of Silver Nanoparticles from Moringa oleifera Leaf Extracts and Its Antimicrobial Potential.Adv. Nat. Sci: Nanosci. Nanotechnol., 2018, 9,015011. DOI: 10.1088/2043-6254/aaabb2.
  • Finzi-Quintão, C. M.; Novack, K. M.; Bernardes-Silva, A. C.; Silva, T. D.; Moreira, L. E. S.; Braga, L. E. M. Influence of Moringa oleifera Derivates in Blends of PBAT/PLA with LDPE. Polimeros 2018, 28, 309–318. DOI: 10.1590/0104-1428.05717.
  • Okoli, C.; Boutonnet, M.; Mariey, L.; Järås, S.; Rajarao, G. Application of Magnetic Iron Oxide Nanoparticles Prepared from Microemulsions for Protein Purification. J. Chem. Tech. Biotech 2011, 86, 1386–1393. DOI: 10.1002/jctb.2704.
  • Reddy, D. H. K.; Ramana, D. K. V.; Seshaiah, K.; Reddy, A. V. R. Biosorption of Ni(II) from Aqueous Phase by Moringa oleifera Bark, a Low Cost Biosorbent. Desalination 2011, 268, 150–157. DOI: 10.1016/j.desal.2010.10.011.
  • El-Borady, O. M.; Ayat, M. S.; Shabrawy, M. A.; Millet, P. Green Synthesis of Gold Nanoparticles Using Parsley Leaves Extract and Their Applications as an Alternative Catalytic, Antioxidant, Anticancer, and Antibacterial Agents. Adv. Powder Technol. 2020, 31, 4390–4400. DOI: 10.1016/j.apt.2020.09.017.
  • Hosny, M.; Fawzy, M. Instantaneous Phytosynthesis of Gold Nanoparticles via Persicaria salicifolia Leaf Extract, and Their Medical Applications. Adv. Powder Technol. 2021, 32, 2891–2904. DOI: 10.1016/j.apt.2021.06.004.
  • Chen, R.; Wang, X.-J.; Zhang, Y.-Y.; Xing, Y.; Yang, L.; Ni, H.; Li, H.-H. Simultaneous Extraction and Separation of Oil, Proteins, and Glucosinolates from Moringa oleifera Seeds. Food Chem. 2019, 300, 125162. DOI: 10.1016/j.foodchem.2019.125162.
  • Do, Q. D.; Angkawijaya, A. E.; Tran-Nguyen, P. L.; Huynh, L. H.; Soetaredjo, F. E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. DOI: 10.1016/j.jfda.2013.11.001.
  • Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria Leaf Extract Mediated Green Synthesis of Silver and Gold Nanoparticles and Assessment of Their Anticancer, Antimicrobial, Antioxidant and Catalytic Properties. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861–871. DOI: 10.1080/21691401.2017.1345930.
  • Saadabi; I, A. M.; Abu Zaid, E. An in Vitro Antimicrobial Activity of Moringa oleifera L. seed Extracts against Different Groups of Microorganisms. Aust J. Basic Appl. Sci. 2011, 5, 129–134.
  • Khan, A. U.; Yuan, Q.; Wei, Y.; Khan, G. M.; Khan, Z. U. H.; Khan, S.; Ali, F.; Tahir, K.; Ahmad, A.; Khan, F. U.; et al. Photocatalytic and Antibacterial Response of Biosynthesized Gold Nanoparticles. J. Photochem. Photobiol. B 2016, 162, 273–277. DOI: 10.1016/j.jphotobiol.2016.06.055.
  • Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials (Basel) 2016, 6, 71. DOI: 10.3390/nano6040071.
  • Balasubramanian, S.; Kala, S. M.; Pushparaj, T. L. Biogenic Synthesis of Gold Nanoparticles Using Jasminum auriculatum Leaf Extract and Their Catalytic, Antimicrobial and Anticancer Activities. J. Drug Deliv. Sci. Technol. 2020, 57, 101620. DOI: 10.1016/j.jddst.2020.101620.
  • Layeghi-Ghalehsoukhteh, S.; Jalaei, J.; Fazeli, M.; Memarian, P.; Shekarforoush, S. S. Evaluation of “Green” Synthesis and Biological Activity of Gold Nanoparticles Using Tragopogon Dubius Leaf Extract as an Antibacterial Agent. IET Nanobiotechnol. 2018, 12, 1118–1124. DOI: 10.1049/iet-nbt.2018.5073.
  • Baran, M. F.; Acay, H.; Keskin, C. Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized (Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Global Challenges 2020, 4, 1900104. DOI: 10.1002/gch2.201900104.
  • Shahriari, M.; Hemmati, S.; Zangeneh; M, A.; Zangeneh, M. Biosynthesis of Gold Nanoparticles Using Allium noeanum Reut. ex Regel Leaves Aqueous Extract; Characterization and Analysis of Their Cytotoxicity, Antioxidant, and Antibacterial Properties. Appl. Organom. Chem. 2019, 33, 11, 1–11. DOI: 10.1002/aoc.5189.
  • Abu-Tahon, M. A.; Ghareib, M.; Abdallah, W. E. Environmentally Benign Rapid Biosynthesis of Extracellular Gold Nanoparticles Using Aspergillus flavus and Their Cytotoxic and Catalytic Activities. Process Biochem. 2020, 95, 1–11. DOI: 10.1016/j.procbio.2020.04.015.
  • Zheng, Y.; Zhang, J.; Zhang, R.; Luo, Z.; Wang, C.; Shi, S. Gold Nano Particles Synthesized from Magnolia officinalis and Anticancer Activity in A549 Lung Cancer Cells. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3101–3109. DOI: 10.1080/21691401.2019.1645152.
  • Singh, H.; Du, J.; Singh, P.; Yi, T. H. Ecofriendly Synthesis of Silver and Gold Nanoparticles by Euphrasia officinalis Leaf Extract and Its Biomedical Applications. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1163–1170. DOI: 10.1080/21691401.2017.1362417.
  • Tao, C. Antimicrobial Activity and Toxicity of Gold Nanoparticles: Research Progress, Challenges and Prospects. Lett. Appl. Microbiol. 2018, 67, 537–543. DOI: 10.1111/lam.13082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.