24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Technological characterization and environment-friendly possibilities to reuse water treatment sludge in building materials

, , , , &
Received 19 Feb 2024, Accepted 08 Jun 2024, Published online: 17 Jun 2024

References

  • Guimarães, M. G. A.; Urashima, D. C. Dewatering Sludge in Geotextile Closed Systems: Brazilian Experiences. S&R. 2013, 36, 251–263. DOI: 10.28927/SR.363251.
  • Wang, M. H.; Chen, C. F.; Ju, Y. R.; Tsai, M. L.; Chen, C. W.; Dong, C. D. Distribution and Environmental Risk Assessment of Trace Metals in Sludge from Multiple Sources in Taiwan. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2021, 56, 481–491. DOI: 10.1080/10934529.2021.1887687.
  • Hasan, S. E. Public Awareness is Key to Successful Waste Management. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2004, 39, 483–492. DOI: 10.1081/ESE-120027539.
  • Das, S.; Lee, S.; Kumar, P.; Kim, K.; Soo, S.; Sundar, S. Solid Waste Management: Scope and the Challenge of Sustainability. J. Cleaner Prod. 2019, 228, 658–678. DOI: 10.1016/j.jclepro.2019.04.323.
  • Ghosh, D.; Ghorai, P.; Sarkar, S.; Maiti, K. S.; Hansda, S. R.; Das, P. Microbial Assemblage for Solid Waste Bioremediation and Valorization with an Essence of Bioengineering. Environ. Sci. Pollut. Res. 2023, 30, 16797–16816. DOI: 10.1007/s11356-022-24849-x.
  • Pellegrino, C.; Faleschini, F. Recycled Aggregates for Concrete Production: State-of-the-Art. In: Sustainability Improvements in the Concrete Industry. Green Energy and Technology. Springer Verlag, 2016; pp 5–34. DOI: 10.1007/978-3-319-28540-5_2.
  • Thomé, A.; Korf, E. P.; Timbola, R. S.; Consoli, N. C. Cadmium Transport Parameters in a Clayey Residual Soil with Different Values of Contaminant pH. S&R. 2013, 36, 311–316. DOI: 10.28927/SR.363311.
  • Sevilla, D. V.; López, A. F.; Bugallo, P. M. B. The Role of a Hazardous Waste Intermediate Management Plant in the Circularity of Products. Sustainability. 2022, 14, 1241. DOI: 10.3390/su14031241.
  • Zhang, Q.; Hu, J.; Lee, D. J.; Chang, Y.; Lee, Y. J. Sludge Treatment: Current Research Trends. Bioresour. Technol. 2017, 243, 1159–1172. DOI: 10.1016/j.biortech.2017.07.070.
  • Souza, A. C. Z.; Santos, J. E.; Marin-Morales, M. A.; Mazzeo, D. E. C. Ecotoxicological Aspects and Environmental Implications of the Use of Water and Sewage Treatment Sludges. Int. J. Environ. Sci. Technol. 2024, 21, 3527–3552. DOI: 10.1007/s13762-023-05338-1.
  • Coelho, R. V.; Tahira, F. S.; Fernandes, F.; Fontenele, H. B. Use of Sludge of Water Treatment Plant in Paving Roads. REEC – Revista Eletrônica de Engenharia Civil. 2015, 10, 11–22. DOI: 10.5216/reec.V10i2.33134.
  • Bourgeois, J. C.; Walsh, M. E.; Gagnon, G. A. Treatment of Drinking Water Residuals: Comparing Sedimentation and Dissolved Air Flotation Performance with Optimal Cation Ratios. Water Res. 2004, 38, 1173–1182. DOI: 10.1016/j.watres.2003.11.018.
  • Ahmad, T.; Ahmad, K.; Ahad, A.; Alam, M. Characterization of Water Treatment Sludge and Its Reuse as Coagulant. J. Environ. Manage. 2016, 182, 606–611. DOI: 10.1016/j.jenvman.2016.08.010.
  • Kesari, K. K.; Soni, R.; Jamal, Q. M. S.; Tripathi, P.; Lal, J. A.; Jha, N. K.; Siddiqui, M. H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water Air Soil Pollut, 232, 208. 2021. DOI: 10.1007/s11270-021-05154-8.
  • Santos, M. T.; Lopes, P. A. Sludge Recovery from Industrial Wastewater Treatment. Sustain. Chem. Pharm. 2022, 29, 100803. DOI: 10.1016/j.scp.2022.100803.
  • Mymrin, V.; Alekseev, K.; Nagalli, A.; Catai, R. E.; Izzo, R. L. S.; Rose, J. L.; Ponte, H. A.; Romano, C. A. Red Ceramics Enhancement by Hazardous Laundry Water Cleaning Sludge. J. Cleaner Prod. 2016, 120, 157–163. DOI: 10.1016/j.jclepro.2015.12.075.
  • Vishwajith, A. G. H.; Mahanama, K. R. R.; Wijesinghe, L. P. R. J. Investigation on the Effective Disposal of Sludge from a Water Treatment Plant. Water Pract. Tech. 2023, 18, 130–139. DOI: 10.2166/wpt.2022.160.
  • Wiewiórska, I.; Rybicki, S. M. Analysis of a Coagulation Sludge Contamination with Metals Using X-Ray Crystallography. DWT. 2022, 254, 151–159. DOI: 10.5004/dwt.2022.28372.
  • Iacovidou, E.; Velis, C. A.; Purnell, P.; Zwirner, O.; Brown, A.; Hahladakis, J.; Millward-Hopkins, J.; Williams, P. T. Metrics for Optimising the Multi-Dimensional Value of Resources Recovered from Waste in a Circular Economy: A Critical Review. J. Cleaner Prod. 2017, 166, 910–938. DOI: 10.1016/j.jclepro.2017.07.100.
  • Babel, S.; Kurniawan, T. A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard Mater. 2003, 97, 219–243. DOI: 10.1016/S0304-3894(02)00263-7.
  • Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of Heavy Metals from Industrial Wastewater: A Review. ChemBioEng Rev. 2017, 4, 37–59. DOI: 10.1002/cben.201600010.
  • Xu, K.; Li, L.; Huang, Z.; Tian, Z.; Li, H. Efficient Adsorption of Heavy Metals from Wastewater on Nanocomposite Beads Prepared by Chitosan and Paper Sludge. Sci. Total Environ. 2022, 846, 157399. DOI: 10.1016/j.scitotenv.2022.157399.
  • Ramirez Zamora, R. M.; Ayala, F. E.; Garcia, L. C.; Moreno, A. D.; Schouwenaars, R. Optimization of the Preparation Conditions of Ceramic Products Using Drinking Water Treatment Sludges. J. Environ. Sci. Health. A Tox. Hazard Subst. Environ. Eng. 2008, 43, 1562–1568. DOI: 10.1080/10934520802293750.
  • Ramos, S. B.; Damasceno, P. B.; Jimenez, I. J. T.; Brito, C. R. Use of Water Treatment Sludge in Ceramic Matrix for Manufacturing Bricks. J. Eng. Tech. Indus. Appl. 2018, 15, 72–79. DOI: 10.5935/2447-0228.20180050.
  • Davydov, S. Y.; Apakashev, R. A.; Oleynikova, L. N. Use of Water Treatment Sludge in the Production of Building and Ceramic Materials. Refract. Ind. Ceram. 2023, 64, 109–114. DOI: 10.1007/s11148-023-00811-3.
  • Mahzuz, H. M. A.; Alam, R.; Alam, M. N.; Basak, R.; Islam, M. S. Use of Arsenic Contaminated Sludge in Making Ornamental Bricks. Int. J. Environ. Sci. Technol. 2009, 6, 291–298.
  • Huang, C.; Pan, J. R.; Sun, K. D.; Liaw, C. T. Reuse of Water Treatment Plant Sludge and Dam Sediment in Brick-Making. Water Sci. Technol. 2001, 44, 273–277. DOI: 10.2166/wst.2001.0639.
  • Benlalla, A.; Elmoussaouiti, M.; Dahhou, M.; Assa, M. Utilization of Water Treatment Plant Sludge in Structural Ceramics Bricks. Appl. Clay Sci. 2015, 118, 171–177. DOI: 10.1016/j.clay.2015.09.012X.
  • Gastaldini, A. L. G.; Hengen, M. F.; Gastaldini, M. C. C.; Do Amaral, F. D.; Antolini, M. B.; Coletto, T. The Use of Water Treatment Plant Sludge Ash as a Mineral Addition. Constr. Build. Mater. 2015, 94, 513–520. DOI: 10.1016/j.conbuildmat.2015.07.038.
  • ABNT – Associação Brasileira de Normas Técnicas. NBR 7181: Solo – Análise Granulométrica. Rio de Janeiro/RJ, 1984; 16.
  • ABNT – Associação Brasileira de Normas Técnicas. NBR 10004: Resíduos Sólidos – Classificação, Rio De Janeiro. Brasil, 2004; 71.
  • ABNT – Associação Brasileira de Normas Técnicas. NBR 10005: Lixiviação de Resíduos – Procedimento, Rio De Janeiro. Brasil, 2004; 16.
  • ABNT – Associação Brasileira de Normas Técnicas. NBR 10006: Solubilização de Resíduos – Procedimento, Rio De Janeiro. Brasil, 2004; 3.
  • VROM (Spatial Planning and the Environment). Dutch Target and Intervention Values. Ministerie van Volksuisveting Ruimteli-jke Ordening en Milieubeheer. 2000. https://www.esdat.net/environmental%20standards/dutch/annexs_i2000dutch%20environmental% 20standards.pdf (accessed May 31, 2024).
  • USEPA – United States Environmental Protection Agency. Characteristics – Introduction and Regulatory Definitions. Hazardous Waste Test Methods/SW-846; Washington, USA, 2004; pp 1–7. https://www.epa.gov/sites/default/files/2020-04/documents/sw_846_ch7.pdf
  • USEPA – United States Environmental Protection Agency. Ground Water and Drinking Water: National Primary Drinking Water Regulations. 2022. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed May 31, 2024).
  • APHA – American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 23th ed.; Washington, DC. USA, 2017.
  • Andrade, J. J. O.; Wenzel, M. C.; Da Rocha, G. H.; Da Silva, S. R. Performance of Rendering Mortars Containing Sludge from Water Treatment Plants as Fine Recycled Aggregate. J. Cleaner Prod. 2018, 192, 159–168. DOI: 10.1016/j.jclepro.2018.04.246.
  • Ferreira, R. L. S.; Medeiros, M.; Pereira, J. E. S.; Henriques, G. F.; Tavares, J. C.; Marvila, M. T.; de Azevedo, A. R. G. Effects of Particle Size Distribution of Standard Sands on the Physical-Mechanical Properties of Mortars. Materials (Basel). 2023, 16, 844. DOI: 10.3390/ma16020844.
  • Liu, Y.; Zhuge, Y.; Chow, C. W. K.; Keegan, A.; Li, D.; Ngoc, P.; Huang, J.; Siddique, R. Utilization of Drinking Water Treatment Sludge in Concrete Paving Blocks: Microstructural Analysis, Durability and Leaching Properties. J. Environ. Manage. 2020, 262, 110352. DOI: 10.1016/j.jenvman.2020.110352.
  • ABNT – Associação Brasileira de Normas Técnicas. NBR 12653: Materiais pozolânicos – Requisitos. Rio de Janeiro/RJ, 2014; 4.
  • Santos, G. Z. B.; Melo, J. A.; Pinheiro, M.; Manzato, L, NBR 12653. Synthesis of Water Treatment Sludge Ash-Based Geopolymers in an Amazonian Context. J. Environ Manage. 2019, 249, 109328. DOI: 10.1016/j.jenvman.2019.109328.
  • Ferrazzo, S. T.; Tímbola, R.; De, S.; Bragagnolo, L.; Prestes, E.; Korf, E. P.; Prietto, P. D. M.; Ulsen, C. Effects of Acidic Attack on Chemical, Mineralogical, and Morphological Properties of Geomaterials. Environ. Sci. Pollut. Res. 2020, 27, 37718–37732. DOI: 10.1007/s11356-020-09834-6.
  • Korf, E. P.; Prietto, P. D. M.; Silveira, A. A.; Ulsen, C.; Bragagnolo, L. Porosity Changes of Compacted Soil Percolated with Acidic Leachate. SR. 2020, 41, 369–377. DOI: 10.28927/SR.413369.
  • Monteiro, S. N.; Alexandre, J.; Margem, J. I.; Sánchez, R.; Vieira, C. M. F. Incorporation of Sludge Waste from Water Treatment Plant into Red Ceramic. Constr. Build. Mater. 2008, 22, 1281–1287. DOI: 10.1016/j.conbuildmat.2007.01.013.
  • Dondi, M.; Raimondo, M.; Zanelli, C. Clays and Bodies for Ceramic Tiles: Reappraisal and Technological Classification. Appl. Clay Sci. 2014, 96, 91–109. DOI: 10.1016/j.clay.2014.01.013.
  • Abo-El-Enein, S. A.; Shebl, A.; El-Dahab, S. A. A. Drinking Water Treatment Sludge as an Efficient Adsorbent for Heavy Metals Removal. Appl. Clay Sci. 2017, 146, 343–349. DOI: 10.1016/j.clay.2017.06.027.
  • Wang, C.; Wu, Y.; Bai, L.; Zhao, Y.; Yan, Z.; Jiang, H.; Liu, X. Recycling of Drinking Water Treatment Residue as an Additional Medium in Columns for Effective P Removal from Eutrophic Surface Water. J. Environ Manage. 2018, 217, 363–372. DOI: 10.1016/j.jenvman.2018.03.128.
  • Ferone, C.; Capasso, I.; Bonati, A.; Roviello, G.; Montagnaro, F.; Santoro, L.; Turco, R.; Ciof, R. Sustainable Management of water potabilization Sludge by Means of Geopolymers Production. J. Cleaner Prod. 2019, 229, 1–9. DOI: 10.1016/j.jclepro.2019.04.299.
  • Bohórquez González, K.; Pacheco, E.; Guzmán, A.; Avila Pereira, Y.; Cano Cuadro, H.; Valencia, J. A. F. Use of Sludge Ash from Drinking Water Treatment Plant in Hydraulic Mortars. Mater. Today Commun. 2020, 23, 100930. DOI: 10.1016/j.mtcomm.2020.100930.
  • Pokhara, P.; Ekamparam, A. S. S.; Gupta, A. B.; Rai, D. C.; Singh, A. Activated Alumina Sludge as Partial Substitute for Fine Aggregates in Brick Making. Constr. Build. Mater. 2019, 221, 244–252. DOI: 10.1016/j.conbuildmat.2019.06.002.
  • Kizinievič, O.; Žurauskienė, R.; Kizinievič, V.; Žurauskas, R. Utilisation of Sludge Waste from Water Treatment for Ceramic Products. Constr. Build. Mater. 2013, 41, 464–473. DOI: 10.1016/j.conbuildmat.2012.12.041.
  • Kizinievič, O.; Kizinievič, V.; Boris, R.; Girskas, G.; Malaiškienė, J. Eco-Efficient Recycling of Drinking Water Treatment Sludge and Glass Waste: Development of Ceramic Bricks. J. Mater. Cycles Waste Manag. 2018, 20, 1228–1238. DOI: 10.1007/s10163-017-0688-z.
  • Lorente, S.; Yssorche-Cubaynes, M. P.; Auger, J. Sulfate Transfer through Concrete: Migration and Diffusion Results. Cem. Concr. Compos. 2011, 33, 735–741. DOI: 10.1016/j.cemconcomp.2011.05.001.
  • Barnett, S. J.; Macphee, D. E.; Lachowski, E. E.; Crammond, N. J. XRD, EDX and IR Analysis of Solid Solutions between Thaumasite and Ettringite. Cem. Concr. Res. 2002, 32, 719–730. DOI: 10.1016/S0008-8846(01)00750-5.
  • Shi, C.; Wang, D.; Behnood, A. Review of Thaumasite Sulfate Attack on Cement Mortar and Concrete. J. Mater. Civ. Eng. 2012, 24, 1450–1460. DOI: 10.1061/(ASCE)MT.1943-5533.0000530.
  • Redaoui, D.; Sahnoune, F.; Heraiz, M.; Saheb, N. Phase Formation and Crystallization Kinetics in Cordierite Ceramics Prepared from Kaolinite and Magnesia. Ceram. Int. 2018, 44, 3649–3657. DOI: 10.1016/j.ceramint.2017.11.119.
  • Njoya, D.; Tadjuidje, F. S.; Ndzana, E. J. A.; Pountouonchi, A.; Tessier-Doyen, N.; Lecomte-Nana, G. Effect of Flux Content and Heating Rate on the Microstructure and Technological Properties of Mayouom (Western-Cameroon) Kaolinite Clay Based Ceramics. J. Asian Ceram. Soc. 2017, 5, 422–426. DOI: 10.1016/j.jascer.2017.09.004.
  • Allegretta, I.; Eramo, G.; Pinto, D.; Kilikoglou, V. Strength of Kaolinite-Based Ceramics: Comparison between Limestone- and Quartz-Tempered Bodies. Appl. Clay Sci. 2015, 116–117, 220–230. DOI: 10.1016/j.clay.2015.03.018.
  • Pu, Y.; Chen, K.; Wu, H. Effects of Kaolinite Addition on the Densification and Dielectric Properties of BaTiO3 Ceramics. J. Alloys Compd. 2011, 509, 8561–8566. DOI: 10.1016/j.jallcom.2011.06.003.
  • Li, S.; Li, N. Effects of Composition and Temperature on Porosity and Pore Size Distribution of Porous Ceramics Prepared from Al(OH)3 and Kaolinite Gangue. Ceram. Int. 2007, 33, 551–556. DOI: 10.1016/j.ceramint.2005.11.004.
  • Trach, Y.; Melnychuk, V.; Stadnyk, O.; Trach, R.; Bujakowski, F.; Kiersnowska, A.; Rutkowska, G.; Skakun, L.; Szer, J.; Koda, E. The Possibility of Implementation of West Ukrainian Paleogene Glauconite–Quartz Sands in the Building Industry: A Case Study. Sustainability. 2023, 15, 1489. DOI: 10.3390/su15021489.
  • Van Deurssen, E.; Pronk, A.; Spaan, S.; Goede, H.; Tielemans, E.; Heederik, D.; Meijster, T. Quartz and Respirable Dust in the Dutch Construction Industry: A Baseline Exposure Assessment as Part of a Multidimensional Intervention Approach. Ann. Occup. Hyg. 2014, 58, 724–738. DOI: 10.1093/annhyg/meu021.
  • Jiang, D.; Li, X.; Jiang, W.; Li, C.; Lv, Y.; Zhou, Y. Effect of Tricalcium Aluminate and Sodium Aluminate on Thaumasite Formation in Cement Paste. Constr. Build. Mater. 2020, 259, 119842. DOI: 10.1016/j.conbuildmat.2020.119842.
  • Kanaan, D.; Soliman, A. M.; Safhi, A. External Sulfate Attack of Ambient-Cured One-Part Alkali-Activated Self-Consolidating Concrete. Sustainability. 2023, 15, 4127. DOI: 10.3390/su15054127.
  • Chiang, K. Y.; Chen, Y. C.; Chien, K. L. Scrap Glass Effect on Building Materials Characteristics Manufactured from Water Treatment Plant Sludge. Environ. Eng. Sci. 2010, 27, 137–145. DOI: 10.1089/ees.2009.0036.
  • Teixeira, S. R.; Santos, G. T. A.; Souza, A. E.; Alessio, P.; Souza, S. A.; Souza, N. R. The Effect of Incorporation of a Brazilian Water Treatment Plant Sludge on the Properties of Ceramic Materials. Appl. Clay Sci. 2011, 53, 561–565. DOI: 10.1016/j.clay.2011.05.004.
  • Tantawy, M. A.; Mohamed, R. S. Middle Eocene Clay from Goset Abu Khashier: Geological Assessment and Utilization with Drinking Water Treatment Sludge in Brick Manufacture. Appl. Clay Sci. 2017, 138, 114–124. DOI: 10.1016/j.clay.2017.01.005.
  • Tartari, R.; Módenes, N. A.; Pianaro, A. S.; Díaz-Mora, N. Lodo Gerado na Estação de Tratamento de Água Tamanduá, Foz Do Iguaçu, PR, Como Aditivo em Argilas Para Cerâmica Vermelha: Parte II: Incorporação Do Lodo em Mistura de Argilas Para Produção de Cerâmica Vermelha. Cerâmica. 2011, 57, 387–394. DOI: 10.1590/S0366-69132011000400003.
  • Santos, G. Z. B.; Melo Filho, J. A.; Manzato, L. Proposta de Uma Cerâmica Obtida Por Meio de Geopolimerização de Lodo de ETA Calcinado. Cerâmica. 2018, 64, 276–283. DOI: 10.1590/0366-69132018643702353.
  • Cremades, L. V.; Cusidó, J. A.; Arteaga, F. Recycling of Sludge from Drinking Water Treatment as Ceramic Material for the Manufacture of Tiles. J. Cleaner Prod. 2018, 201, 1071–1080. DOI: 10.1016/j.jclepro.2018.08.094.
  • Hagemann, S. E.; Gastaldini, A. L. G.; Cocco, M.; Jahn, S. L.; Terra, L. M. Synergic Effects of the Substitution of Portland Cement for Water Treatment Plant Sludge Ash and Ground Limestone: Technical and Economic Evaluation. J. Cleaner Prod. 2019, 214, 916–926. DOI: 10.1016/j.jclepro.2018.12.324.
  • Rodríguez, N. H.; Ramírez, S. M.; Varela, M. T. B.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J. Cement and Concrete Research Re-Use of Drinking Water Treatment Plant (DWTP) Sludge: Characterization and Technological Behaviour of Cement Mortars with Atomized Sludge Additions. Cem. Concr. Res. 2010, 40, 778–786. DOI: 10.1016/j.cemconres.2009.11.012.
  • Deboucha, W.; Leklou, N.; Khelidj, A.; Oudjit, M. N. Natural Pozzolana Addition Effect on Compressive Strength and Capillary Water Absorption of Mortar. Energy Procedia. 2017, 139, 689–695. DOI: 10.1016/j.egypro.2017.11.273.
  • Nimwinya, E.; Arjharn, W.; Horpibulsuk, S.; Phoo-Ngernkham, T.; Poowancum, A. A Sustainable Calcined Water Treatment Sludge and Rice Husk Ash Geopolymer. J. Cleaner Prod. 2016, 119, 128–134. DOI: 10.1016/j.jclepro.2016.01.060.
  • Wang, R.; Wang, J.; Dong, T.; Ouyang, G. Structural and Mechanical Properties of Geopolymers Made of Aluminosilicate Powder with Different SiO2/Al2O3 Ratio: Molecular Dynamics Simulation and Microstructural Experimental Study. Constr. Build. Mater. 2020, 240, 117935. DOI: 10.1016/j.conbuildmat.2019.117935.
  • Khale, D.; Chaudhary, ÆR. Mechanism of Geopolymerization and Factors Influencing Its Development: A Review. J. Mater Sci. 2007, 42, 729–746. DOI: 10.1007/s10853-006-0401-4.
  • Wolff, E.; Schwabe, W. K.; Conceição, S. V. Utilization of Water Treatment Plant Sludge in Structural Ceramics. J. Cleaner Prod. 2014, 96, 282–289. DOI: 10.1016/j.jclepro.2014.06.018.
  • Ewais, E. M. M.; Elsaadany, R. M.; Ahmed, A. A.; Shalaby, N. H.; Al-Anadouli, B. E. H. Insulating Refractory Bricks from Water Treatment Sludge and Rice Husk Ash. Refract Ind. Ceram. 2017, 58, 136–144. DOI: 10.1007/s11148-017-0071-6.
  • Suksiripattanapong, C.; Horpibulsuk, S.; Phetchuay, C.; Suebsuk, J.; Phoo-Ngernkham, T.; Arulrajah, A. Water Treatment Sludge–Calcium Carbide Residue Geopolymers as Nonbearing Masonry Units. J. Mater. Civ. Eng. 2017, 29, 04017095. DOI: 10.1061/(asce)mt.1943-5533.0001944.
  • Andrade, J. J. D. O.; Possan, E.; Wenzel, M. C.; Silva, S. R. D. Feasibility of Using Calcined Water Treatment Sludge in Rendering Mortars: A Technical and Sustainable Approach. Sustainability. 2019, 11, 3576. DOI: 10.3390/su11133576.
  • Heniegal, A. M.; Ramadan, M. A.; Naguib, A.; Agwa, I. S. Study on Properties of Clay Brick Incorporating Sludge of Water Treatment Plant and Agriculture Waste. Case Stud. Constr. Mater. 2020, 13, e00397. DOI: 10.1016/j.cscm.2020.e00397.
  • Godoy, L. G. G.; Rohden, A. B.; Garcez, M. R.; Dalt, S.; Gomes, L. B. Production of Supplementary Cementitious Material as a Sustainable Management Strategy for Water Treatment Sludge Waste. Case Stud. Constr. Mater. 2020, 12, e00329. DOI: 10.1016/j.cscm.2020.e00329.
  • Sales, A.; De Souza, F. R.; Almeida, F. D. C. R. Mechanical Properties of Concrete Produced with a Composite of Water Treatment Sludge and Sawdust. Constr. Build. Mater. 2011, 25, 2793–2798. DOI: 10.1016/j.conbuildmat.2010.12.057.
  • Bourzik, O.; Baba, K.; Akkouri, N.; Meshram, R. B.; Bouyakhsass, R.; Nounah, A. Life Cycle Assessment and Thermophysical Properties of a Fly Ash-Based Geopolymer Containing Drinking Water Treatment Sludge. Environ. Sci. Pollut. Res. Int. 2023, 30, 118989–119000. DOI: 10.1007/s11356-023-30736-w.
  • Caniani, D.; Masi, S.; Mancini, I. M.; Trulli, E. Innovative Reuse of Drinking Water Sludge in Geo-Environmental Applications. Waste Manag. 2013, 33, 1461–1468. DOI: 10.1016/j.wasman.2013.02.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.