3,414
Views
137
CrossRef citations to date
0
Altmetric
Original Articles

Biomarkers of mercury toxicity: Past, present, and future trends

, , , , &

References

  • Abou-Donia, M. B., M. M. Abou-Donia, E. M. ElMasry, J. A. Monro, and M. F. A. Mulder. 2013. Autoantibodies to nervous system specific proteins are elevated in sera of flight crew members: Biomarkers for nervous sytem injury. Journal Toxicogical Environment Health, A 76:363–80. doi:10.1080/15287394.2013.765369.
  • Abou-Donia, M. B., L. B. Goldstein, S. Bullman, T. Tu, W. A. Khan, A. M. Dechkovskaia, and A. A. Abdel-Rahman. 2008. Imidacloprid induces neurobehavioral deficits and increases protein expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exoposure. Journal Toxicogical Environment Health, A 71:119–30. doi:10.1080/15287390701613140.
  • Agrawal, A., P. Kaushal, S. Agrawal, S. Gollapudi, and S. Gupta. 2007. Thimerosal induces Th2 responses via influencing cytokine secretion by human dendritic cells. Journal of Leukocyte Biology 81:474–82. doi:10.1189/jlb.0706467.
  • Alam, J., C. Wicks, D. Stewart, P. Gong, C. Touchard, S. Otterbein, A. M. Choi, M. E. Burow, and J. Tou. 2000. Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. The Journal of Biological Chemistry 275:27694–702.
  • Alkazemi, D., G. M. Egeland, L. J. Roberts 2nd, H. M. Chan, and S. Kubow. 2013. New insights regarding tissue Se and Hg interactions on oxidative stress from plasma IsoP and IsoF measures in the Canadian Inuit population. The Journal of Lipid Research 54:1972–79. doi:10.1194/jlr.M033068.
  • Allen, J. W., L. A. Mutkus, and M. Aschner. 2001a. Mercuric chloride, but not methylmercury, inhibits glutamine synthetase activity in primary cultures of cortical astrocytes. Brain research 891:148–57. doi:10.1016/S0006-8993(00)03185-1.
  • Allen, J. W., L. A. Mutkus, and M. Aschner. 2001b. Methylmercury-mediated inhibition of 3H-d-aspartate transport in cultured astrocytes is reversed by the antioxidant catalase. Brain research 902:92–100. doi:10.1016/S0006-8993(01)02375-7.
  • Allen, J. W., G. Shanker, and M. Aschner. 2001c. Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain research 894:131–40. doi:10.1016/S0006-8993(01)01988-6.
  • Al-Saleh, I., A. Al-Sedairi, and R. Elkhatib. 2012. Effect of mercury (Hg) dental amalgam fillings on renal and oxidative stress biomarkers in children. Science of the Total Environment 431:188–96. doi:10.1016/j.scitotenv.2012.05.036.
  • Amoli, J. S., A. Barin, M. Ebrahimi-Rad, and P. Sadighara. 2011. Cell damage through pentose phosphate pathway in fetus fibroblast cells exposed to methyl mercury. Journal Applications Toxicogical 31:685–89. doi:10.1002/jat.1628.
  • Andrews, N., E. Miller, A. Grant, J. Stowe, V. Osborne, and B. Taylor. 2004. Thimerosal exposure in infants and developmental disorders: A retrospective cohort study in the United Kingdom does not support a causal association. Pediatrics 114:584–91. doi:10.1542/peds.2003-1177-L.
  • Armah, F. A., S. A. Boamah, R. Quansah, S. Obiri, and I. Luginaah. 2016. Unsafe occupational health behaviors: Understanding mercury-related environmental health risks to artisanal gold miners in Ghana. Frontiers Environment Sciences 4:29. doi:10.3389/fenvs.2016.00029.
  • Arnér, E. S. J. 2009. Focus on mammalian thioredoxin reductases - important selenoproteins with versatile functions. Biochim Biophysics Acta 1790:495–526. doi:10.1016/j.bbagen.2009.01.014.
  • Aschner, M. 2000. Astrocytic swelling, phospholipase A2, glutathione and glutamate: Interactions in methylmercury-induced neurotoxicity. Cellular Molecular Biologic 46:843–54.
  • Aschner, M., Y.-L. Du, M. Gannon, and H. K. Kimelberg. 1993. Methylmercury-induced alterations in excitatory amino acid transport in rat primary astrocyte cultures. Brain research 602:181–86. doi:10.1016/0006-8993(93)90680-L.
  • Aylward, L. L., S. M. Hays, C. R. Kirman, S. A. Marchitti, J. F. Kenneke, C. English, D. R. Mattison, and R. A. Becker. 2014. Relationships of chemical concentrations in maternal and cord blood: A review of available data. Journal Toxicogical Environment Health, B 17:175–203. doi:10.1080/10937404.2014.884956.
  • Baird, L., and A. T. Dinkova-Kostova. 2011. The cytoprotective role of the Keap1-Nrf2 pathway. Archives of Toxicology 85:241–72. doi:10.1007/s00204-011-0674-5.
  • Baraldi, M., P. Zanoli, F. Tascedda, J. M. Blom, and N. Brunello. 2002. Cognitive deficits and changes in gene expression of NMDA receptors after prenatal methylmercury exposure. Environment Health Persp 110 (Suppl 5):855–58. doi:10.1289/ehp.02110s5855.
  • Barbosa, A. C., A. A. Boischio, G. A. East, I. Ferrari, A. Gonçalves, P. R. M. Silva, and T. M. E. Cruz. 1995. Mercury contamination in the Brazilian Amazon. Environmental and occupational aspects. Water, Air, and Soil Pollution 80:109–21. doi:10.1007/BF01189660.
  • Barbosa, A. C., S. R. L. Silva, and J. G. Dórea. 1998. Concentration of mercury in hair of indigenous mothers and infant from the Amazon basin. Archives Environment Contamin Toxicogical 34:100–05. doi:10.1007/s002449900291.
  • Barcelos, G. R., D. Grotto, K. C. De Marco, J. Valentini, A. Lengert, A. A. De Oliveira, S. C. Garcia, G. Ú. Braga, K. Schläwicke- Engström, I. M. Cólus, K. Broberg, and F. Barbosa Jr. 2013. Polymorphisms in glutathione-related genes modify mercury concentrations and antioxidant status in subjects environmentally exposed to methylmercury. The Science of the Total Environment 463-464:319–25. doi:10.1016/j.scitotenv.2013.06.029.
  • Barone, S. Jr., N. Haykal-Coates, D. K. Parran, and H. A. Tilson. 1998. Gestational exposure to methylmercury alters the developmental pattern of Trk-like immunoreactivity in the rat brain and results in cortical dysmorphology. Developments Brain Researcher 109:13–31. doi:10.1016/S0165-3806(98)00038-8.
  • Barregard, L., F. Trachtenberg, and S. McKinlay. 2008. Renal effects of dental amalgam in children: The New England children’s amalgam trial. Environment Health Persp 116:394–99. doi:10.1289/ehp.10504.
  • Bartell, S. M., R. A. Ponce, R. N. Sanga, and E. M. Faustman. 2000. Human variability in mercury toxicokinetics and steady state biomarker ratios. Environmental Research 84:127–32. doi:10.1006/enrs.2000.4104.
  • Basu, N., J. M. Goodrich, and J. Head. 2014. Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision making. Environment Toxiol Chemical 33:1248–58. doi:10.1002/etc.2375.
  • Bélanger, M.-C., M.-E. Mirault, E. Dewailly, M. Plante, L. Berthiaume, M. Noel, and P. Julien. 2008. Seasonal mercury and oxidant-antioxidant status of James Bay sport fishermen. Metabolism 57:630–36. doi:10.1016/j.metabol.2007.12.006.
  • Benford, D. J., A. B. Hanley, K. Bottrill, S. Oehlshlager, M. Balls, F. Branca, J. J. Castegnaro, J. Descotes, K. Hemminiki, D. Lindsay, and B. Schilter. 2000. Biomarkers as predictive tools in toxicity testing. ATLA - Alternative Laboratory Animal 28:119–31.
  • Berglund, M., B. Lind, K. A. Björnberg, B. Palm, Ö. Einarsson, and M. Vahter. 2005. Inter-individual variations of human mercury exposure biomarkers: A cross-sectional assessment. Environment Health 4:20. doi:10.1186/1476-069X-4-20.
  • Bernard, A. 2008. Biomarkers of metal toxicity in population studies: Research potential and interpretation issues. Journal Toxicogical Environment Health A 71:1259–65. doi:10.1080/15287390802211885.
  • Bernard, A., and R. Lauwerys. 1989. Epidemiological application of early markers of nephrotoxicity. Toxicology Letters 46:293–306. doi:10.1016/0378-4274(89)90137-9.
  • Berntssen, M. H., A. Aatland, and R. D. Handy. 2003. Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behavior in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology 65:55–72. doi:10.1016/S0166-445X(03)00104-8.
  • Björnberg, K. A., M. Vahter, B. Berglund, B. Niklasson, M. Blennow, and G. Sandborgh-Englund. 2005. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant. Environmental Health Perspectives 113:1381–85. doi:10.1289/ehp.7856.
  • Bo, L., D. M. Miller, and J. S. Woods. 1993. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochemical Pharmacology 45:2017–24. doi:10.1016/0006-2952(93)90012-L.
  • Bose-O’Reilly, S., B. Lettmeier, G. Roider, U. Sieberta, and G. Drasch. 2008. Mercury in breast milk – a health hazard for infants in gold mining areas? International Journal Hygiene Environment Health 211:615–23. doi:10.1016/j.ijheh.2007.09.015.
  • Bose-O’Reilly, S., K. M. McCarty, N. Steckling, and B. Lettmeier. 2010. Mercury exposure and children’s health. Current Problems Pediatric Adolescent Health Care 40:186–215. doi:10.1016/j.cppeds.2010.07.002.
  • Bose-O’Reilly, S., R. Schierl, D. Nowak, U. Siebert, J. F. William, F. T. Owi, and Y. I. Ir. 2016. A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia. Environmental Research 149:274–81. doi:10.1016/j.envres.2016.04.007.
  • Branco, V., J. Canário, A. Holmgren, and C. Carvalho. 2011. Inhibition of the thioredoxin system in the brain and liver of zebra-seabreams exposed to waterborne methylmercury. Toxicology and Applied Pharmacology 251:95–103. doi:10.1016/j.taap.2010.12.005.
  • Branco, V., J. Canário, J. Lu, A. Holmgren, and C. Carvalho. 2012a. Mercury and selenium interaction in vivo: Effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biologic Medica 52:781–93. doi:10.1016/j.freeradbiomed.2011.12.002.
  • Branco, V., A. Godinho-Santos, J. Gonçalves, J. Lu, A. Holmgren, and C. Carvalho. 2014. Mitochondrial thioredoxin reductase inhibition, selenium status and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radical Biologic Medica 73:95–105. doi:10.1016/j.freeradbiomed.2014.04.030.
  • Branco, V., P. Ramos, J. Canário, J. Lu, A. Holmgren, and C. Carvalho. 2012b. Biomarkers of adverse response to mercury: Histopathology vs. thioredoxin reductase activity. Journal of Biomedicine & Biotechnology 2012:359879. doi:10.1155/2012/359879.
  • Bridges, C. C., and R. K. Zalups. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology 204:274–308. doi:10.1016/j.taap.2004.09.007.
  • Bridges, C. C., and R. K. Zalups. 2010. Transport of inorganic mercury and methylmercury in target tissues and organs. Journal Toxicogical Environment Health B 13:385–410. doi:10.1080/10937401003673750.
  • Brookes, N. 1992. In vitro evidence for the role of glutamate in the CNS toxicity of mercury. Toxicology 76:245–56. doi:10.1016/0300-483X(92)90193-I.
  • Buckell, M., D. Hunter, R. Milton, and K. M. A. Perry. 1946. Chronic mercury poisoning. British Journal Industrial Medica 3:55–63.
  • Burger, J., W. L. Stephens, C. S. Boring Jr., M. Kuklinski, J. W. Gibbons, and M. Gochfeld. 1999. Factors in exposure assessment: Ethnic and socioeconomic differences in fishing and consumption of fish caught along the Savannah River. Risk Analysis 19:427–38. doi:10.1111/j.1539-6924.1999.tb00418.x.
  • Burk, R. F., and K. E. Hill. 2005. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annual Review of Nutrition 25:215–35. doi:10.1146/annurev.nutr.24.012003.132120.
  • Caito, S., H. Zeng, J. L. Aschner, and M. Aschner. 2014. Methylmercury alters the activities of Hsp90 client proteins, prostaglandin E synthase/p23 (PGES/23) and nNOS. Plos One 9:e98161. doi:10.1371/journal.pone.0098161.
  • Callan, A. C., A. Devine, L. Qi, J. C. Ng, and A. L. Hinwood. 2015. Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function. International Journal Hygiene Environment Health 218:444–51. doi:10.1016/j.ijheh.2015.03.010.
  • Cambier, S., P. Gonzalez, N. Mesmer-Dudons, D. Brethes, M. Fujimura, and J. P. Bourdineaud. 2012. Effects of dietary methylmercury on the zebrafish brain: Histological, mitochondrial, and gene transcription analyses. Biometals 25:165–80. doi:10.1007/s10534-011-9494-6.
  • Cardenas, A., D. C. Koestler, E. A. Houseman, B. P. Jackson, M. L. Kile, M. R. Karagas, and C. J. Marsit. 2015. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 10:508–15. doi:10.1080/15592294.2015.1046026.
  • Carneiro, M. F., D. Grotto, and F. Barbosa Jr. 2014. Inorganic and methylmercury levels in plasma are differentially associated with age, gender, and oxidative stress markers in a population exposed to mercury through fish consumption. Journal Toxicogical Environment Health A 77:69–79. doi:10.1080/15287394.2014.865584.
  • Carvalho, C., J. Lu, X. Zhang, E. Arnér, and A. Holmgren. 2011. Effects of selenite and chelating agents on mammalian thioredoxin reductase inhibited by mercury: Implications for treatment of mercury poisoning. FASEB Journal 25:370–81. doi:10.1096/fj.10-157594.
  • Carvalho, C. M. L., E. Chew, S. I. Hashemy, J. Lu, and A. Holmgren. 2008a. Inhibition of human thioredoxin system: A molecular mechanism of mercury toxicity. The Journal of Biological Chemistry 283:11913–23. doi:10.1074/jbc.M710133200.
  • Carvalho, C. M. L., A. I. N. M. Matos, M. L. Mateus, A. P. M. Santos, and M. C. C. Batoréu. 2008b. High-fish consumption and risk prevention: Exposure assessment to methylmercury in Portugal. Journal Toxicogical Environment Health A 71:1279–88. doi:10.1080/15287390801989036.
  • Castilhos, Z., S. Rodrigues-Filho, R. Cesar, A. P. Rodrigues, R. Villas-Bôas, I. De Jesus, M. Lima, K. Faial, A. Miranda, E. Brabo, and C. Beinhoff. 2015. Human exposure and risk assessment associated with mercury contamination in artisanal gold mining areas in the Brazilian Amazon. Environment Sciences Pollution Researcher International 22:11255–64. doi:10.1007/s11356-015-4340-y.
  • Chang, J. Y. 2007. Methylmercury causes glial IL-6 release. Neuroscience Letters 416:217–20. doi:10.1016/j.neulet.2007.01.076.
  • Chen, C., H. Yu, J. Zhao, B. Li, L. Qu, S. Liu, P. Zhang, and Z. Chai. 2006. The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environment Health Persp 114:297–301. doi:10.1289/ehp.7861.
  • Cherian, M. G., and T. W. Clarkson. 1976. Biochemical changes in rat kidney on exposure to elemental mercury vapor: Effect on biosynthesis of metallothionein. Chemistry-Biology Interaction 13:109–20. doi:10.1016/0009-2797(76)90093-4.
  • Chmielnicka, J., E. Brzeźnicka, and A. Sniady. 1986. Kidney concentrations and urinary excretion of mercury, zinc and copper following the administration of mercuric chloride and sodium selenite to rats. Archives of Toxicology 59:16–20. doi:10.1007/BF00263951.
  • Clarkson, T. W., and L. Magos. 2006. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology 36:609–62. doi:10.1080/10408440600845619.
  • Clarkson, T. W., L. Magos, and G. J. Myers. 2003. Human exposure to mercury: The three modern dilemmas. Journal Trace Elements Experiments Medica 16:321–43. doi:10.1002/(ISSN)1520-670X.
  • Clarkson, T. W., J. B. Vyas, and N. Ballatori. 2007. Mechanisms of mercury disposition in the body. American Journal of Industrial Medicine 50:757–64. doi:10.1002/(ISSN)1097-0274.
  • Cooke, G. M. 2014. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy. Journal Toxicogical Environment Health B 17:205–24. doi:10.1080/10937404.2014.898167.
  • Cooper, A. J., and B. S. Kristal. 1997. Multiple roles of glutathione in the central nervous system. Biological Chemistry 378:793–802.
  • Cordier, S., M. Garel, L. Mandereau, H. Morcel, P. Doineau, and S. Gosme-Seguret. 2002. Neurodevelopmental investigations among methylmercury exposed children in French Guiana. Environmental Research 89:1–11. doi:10.1006/enrs.2002.4349.
  • Counter, S. A., L. H. Buchanan, F. Ortega, and G. Laurell. 2002. Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. Journal of Toxicology and Environmental Health. Part A 65:149–63. doi:10.1080/152873902753396785.
  • Custodio, H. M., K. Broberg, M. Wennberg, J. H. Jansson, B. Vessby, G. Hallmans, B. Stegmayr, and S. Skerfving. 2004. Polymorphisms in glutathione-related genes affect methylmercury retention. Archives of Environmental Health 59:588–95. doi:10.1080/00039890409603438.
  • Custodio, H. M., R. Harari, L. Gerhardsson, S. Skerfving, and K. Broberg. 2005. Genetic influences on the retention of inorganic mercury. Archives Environment Occupational Health 60:17–23. doi:10.3200/AEOH.60.1.17-23.
  • Dahl, R., R. F. White, P. Weihe, N. Sørensen, R. Letz, H. K. Hudnell, D. A. Otto, and P. Grandjean. 1996. Feasibility and validity of three computer-assisted neurobehavioral tests in 7-year-old children. Neurotoxicology Teratol 18:413–19. doi:10.1016/0892-0362(96)00031-1.
  • Dalla Corte, C. L., C. Wagner, J. H. Sudati, B. Comparsi, G. O. Leite, A. Busanello, F. A. Soares, M. Aschner, and J. B. Rocha. 2013. Effects of diphenyl diselenide on methylmercury toxicity in rats. Biomedical Researcher International 2013:983821. doi:10.1155/2013/983821.
  • Dare, E., W. Li, B. Zhivotovsky, X. Yuan, and S. Ceccatelli. 2001. Methylmercury and H2O2 provoke lysosomal damage in human astrocytoma D384 cells followed by apoptosis. Free Radical Biologic Medica 30:1347–56. doi:10.1016/S0891-5849(01)00526-3.
  • Dave, V., K. J. Mullaney, S. Goderie, H. K. Kimelberg, and M. Aschner. 1994. Astrocytes as mediators of methylmercury neurotoxicity: Effects on D-aspartate and serotonin uptake. Developmental Neuroscience 16:222–31. doi:10.1159/000112110.
  • De Marco, K. C., G. U. Braga, and F. Barbosa Jr. 2011. Determination of the effects of eNOS gene polymorphisms (T-786C and Glu298Asp) on nitric oxide levels in a methylmercury-exposed population. Journal Toxicogical Environment Health A 74:1323–33. doi:10.1080/15287394.2011.600665.
  • De Oliveira Souza, V. C., K. C. De Marco, H. J. Laure, J. C. Rosa, and F. Barbosa Jr. 2016. A brain proteome profile in rats exposed to methylmercury or thimerosal (ethylmercury). Journal Toxicogical Environment Health A 79:502–12. doi:10.1080/15287394.2016.1182003.
  • Deng, Y., Z. Xu, B. Xu, W. Liu, Y. Wei, Y. Li, S. Feng, and T. Yang. 2014. Exploring cross-talk between oxidative damage and excitotoxicity and the effects of riluzole in the rat cortex after exposure to methylmercury. Neurotoxicol Researcher 26:40–51. doi:10.1007/s12640-013-9448-6.
  • Diamond, G. L., and R. K. Zalups. 1998. Understanding renal toxicity of heavy metals. Toxicogical Pathologists 26:92–103. doi:10.1177/019262339802600111.
  • Dietrich, M. O., C. E. Mantese, G. Dos Anjos, D. O. Souza, and M. Farina. 2005. Motor impairment induced by oral exposure to methylmercury in adult mice. Environmental Toxicology and Pharmacology 19:169–75. doi:10.1016/j.etap.2004.07.004.
  • Díez, S., S. Delgado, I. Aguilera, J. Astray, B. Pérez-Gómez, M. Torrent, J. Sunyer, and J. M. Bayona. 2009. Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. Archives of Environmental Contamination and Toxicology 56:615–22. doi:10.1007/s00244-008-9213-7.
  • Djukic, M. M., M. D. Jovanovic, M. Ninkovic, I. Stevanovic, K. Ilic, M. Curcic, and J. Vekic. 2012. Protective role of glutathione reductase in paraquat induced neurotoxicity. Chemistry-Biology Interaction 199:74–86. doi:10.1016/j.cbi.2012.05.008.
  • Doi, R., and M. Tagawa. 1983. A study on the biochemical and biological behavior of methylmercury. Toxicology and Applied Pharmacology 69:407–16. doi:10.1016/0041-008X(83)90264-8.
  • Dong, L., Z. Li, X. Bi, and L. Ling. 2001. Effects of methyl mercury chloride on nuclear factor-kappa B DNA binding activities of nuclear protein extracts from developing rat cerebra and cerebella. Wei Sheng Yan Jiu 30:7–9.
  • Dórea, J. G., V. L. Bezerra, V. Fajon, and M. Horvat. 2011. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to Thimerosal-containing vaccines. Clinica Chimica Acta 412:1563–66. doi:10.1016/j.cca.2011.05.003.
  • Dórea, J. G., M. Farina, and J. B. T. Rocha. 2013. Toxicity of ethylmercury (and Thimerosal): A comparison with methylmercury. Journal Applications Toxicogical 33:700–11. doi:10.1002/jat.2855.
  • Dórea, J. G., R. C. Marques, and L. Abreu. 2014. Milestone achievement and neurodevelopment of rural Amazonian toddlers (12 to 24 Months) with different methylmercury and ethylmercury exposure. Journal Toxicogical Environment Health A 77:1–13. doi:10.1080/15287394.2014.861335.
  • Dórea, J. G., R. C. Marques, and C. Isejima. 2012. Antenatal and postnatal exposure to methyl- and ethylmercury. Journal of Biomedicine & Biotechnology 2012:9. doi:10.1155/2012/132876.
  • Echeverria, D., H. V. Aposhian, J. S. Woods, N. J. Heyer, M. M. Aposhian, A. C. Bittner Jr, R. K. Mahurin, and M. Cianciola. 1998. Neurobehavioral effects from exposure to dental amalgam Hg0: New distinctions between recent exposure and Hg body burden. FASEB Journal 12:971–80.
  • Echeverria, D., N. J. Heyer, M. D. Martin, C. A. Naleway, J. S. Woods, and A. C. Bittner. 1994. Behavioral effects of low-level exposure to elemental mercury among dentists. Neurotoxicology Teratol 17:161–68. doi:10.1016/0892-0362(94)00049-J.
  • El-Fawal, H. A., Z. Gong, A. R. Little, and H. L. Evans. 1996. Exposure to methylmercury results in serum autoantibodies to neurotypic and gliotypic proteins. Neurotoxicology 17:531–39.
  • Engström, K., S. Ameer, L. Bernaudat, G. Drasch, J. Baeuml, S. Skerfving, S. Bose-O’Reilly, and K. Broberg. 2013. Polymorphisms in genes encoding potential mercury transporters and urine mercury concentrations in populations exposed to mercury vapor from gold mining. Environment Health Persp 121:85–91.
  • Eroglu, K., G. Atli, and M. Canli. 2005. Effects of metal (Cd, Cu, Zn) interactions on the profiles of metallothionein-like proteins in the Nile fish Oreochromis niloticus. Bulletin Environment Contamination Toxicogical 75:390–99. doi:10.1007/s00128-005-0766-0.
  • Eskes, C., P. Honegger, L. Juillerat-Jeanneret, and F. Monnet-Tschudi. 2002. Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 37:43–52. doi:10.1002/(ISSN)1098-1136.
  • Farina, M., M. Aschner, and J. B. T. Rocha. 2011. Oxidative stress in MeHg-induced neurotoxicity. Toxicology and Applied Pharmacology 256:405–17. doi:10.1016/j.taap.2011.05.001.
  • Farina, M., F. Campos, I. Vendrell, J. Berenguer, M. Barzi, S. Pons, and C. Sunol. 2009. Probucol increases glutathione peroxidase-1 activity and displays long-lasting protection against methylmercury toxicity in cerebellar granule cells. Toxicological Sciences 112:416–26. doi:10.1093/toxsci/kfp219.
  • Fessel, J. P., and L. J. Roberts II. 2005. Isofurans: Novel products of lipid peroxidation that define the occurrence of oxidant injury in settings of elevated oxygen tension. Antioxidants & Redox Signaling 7:202–09. doi:10.1089/ars.2005.7.202.
  • Fombonne, E., R. Zakarian, A. Bennett, L. Meng, and D. McLean-Heywood. 2006. Pervasive developmental disorders in Montreal, Quebec, Canada: Prevalence and links with immunizations. Pediatrics 118:e139–150. doi:10.1542/peds.2005-2993.
  • Fournie, G. J., M. Mas, B. Cautain, M. Savignac, J. F. Subra, L. Pelletier, A. Saoudi, D. Lagrange, M. Calise, and P. Druet. 2001. Induction of autoimmunity through bystander effects. Lessons from immunological disorders induced by heavy metals. Journal of Autoimmunity 16:319–26. doi:10.1006/jaut.2000.0482.
  • Fowler, B. A., and K. R. Mahaffey. 1978. Interactions among lead, cadmium, and arsenic in relation to porphyrin excretion patterns. Environment Health Persp 25:87–90. doi:10.1289/ehp.782587.
  • Franco, J. L., H. C. Braga, J. Stringari, F. C. Missau, T. Posser, B. G. Mendes, R. B. Leal, A. R. Santos, A. L. Dafre, M. G. Pizzolatti, and M. Farina. 2007. Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: Protective effects of quercetin. Chemical Research in Toxicology 20:1919–26. doi:10.1021/tx7002323.
  • Franco, J. L., T. Posser, P. R. Dunkley, P. W. Dickson, J. J. Mattos, R. Martins, A. C. Bainy, M. R. Marques, A. L. Dafre, and M. Farina. 2009. Methylmercury neurotoxicity is associated with the inhibition of the antioxidant enzyme glutathione peroxidase. Free Radical Biologic Medica 47:449–57. doi:10.1016/j.freeradbiomed.2009.05.013.
  • Franco, J. L., T. Posser, F. Missau, M. G. Pizzolatti, A. R. Dos Santos, D. O. Souza, M. Aschner, J. B. T. Rocha, A. L. Dafre, and M. Farina. 2010. Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environmental Toxicology and Pharmacology 30:272–78. doi:10.1016/j.etap.2010.07.003.
  • Franco, J. L., A. Teixeira, F. C. Meotti, C. M. Ribas, J. Stringari, S. C. Garcia Pomblum, A. M. Moro, D. Bohrer, A. V. Bairros, A. L. Dafre, A. R. Santos, and M. Farina. 2006. Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environmental Research 102:22–28. doi:10.1016/j.envres.2006.02.003.
  • Franconi, F., M. Miceli, L. Alberti, G. Seghieri, M. G. De Montis, and A. Tagliamonte. 1998. Further insights into the anti-aggregating activity of NMDA in human platelets. British Journal of Pharmacology 124:35–40. doi:10.1038/sj.bjp.0701790.
  • Franconi, F., M. Miceli, M. G. De Montis, E. L. Crisafi, F. Bennardini, and A. Tagliamonte. 1996. NMDA receptors play an anti-aggregating role in human platelets. Thromb Haemost 76:84–87.
  • Franko, A., M. V. Budihna, and M. Dodic-Fikfak. 2005. Long.term effects of elemental mercury on renal function in miners of the Idrija mercury mine. Annals Occupational Hygiene 49:521–27. doi:10.1093/annhyg/mei022.
  • Fujita, H. 2001. Measurement of delta-aminolevulinate dehydratase activity. In Current protocols in toxicology, eds L. G. Costa, E. Hodgson, D. A. Lawrence, D. J. Reed, and W. F. GreenLee, 8.6:8.61-8.66.11. New Jersey, USA: John Wiley & Sons Inc.
  • Fujiyama, J., K. Hirayama, and A. Yasutake. 1994. Mechanism of methylmercury efflux from cultured astrocytes. Biochemical Pharmacology 47:1525–30. doi:10.1016/0006-2952(94)90527-4.
  • Gao, Y., C. H. Yan, X. D. Yu, and S. H. Wu. 2006. Effects of perinatal exposure to methylmercury on the structure of hippocampus and cerebellum in young rats. Wei Sheng Yan Jiu 35:402–05.
  • Gardner, R. M., J. F. Nyland, and E. K. Silbergeld. 2010b. Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicology Letters 198:182–90. doi:10.1016/j.toxlet.2010.06.015.
  • Gardner, R. M., J. F. Nyland, I. A. Silva, A. M. Ventura, J. M. De Souza, and E. K. Silbergeld. 2010a. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in amazonian Brazil: A cross-sectional study. Environmental Research 110:345–54. doi:10.1016/j.envres.2010.02.001.
  • Gerson, R. J., and Z. A. Shaikh. 1982. Uptake and binding of cadmium and mercury to metallothionein in rat hepatocyte primary cultures. The Biochemical Journal 208:465–72. doi:10.1042/bj2080465.
  • Gibb, H., and K. G. O’Leary. 2014. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environment Health Persp 122:667.
  • Gil, F., and A. Pla. 2001. Biomarkers as biological indicators of xenobiotic exposure. Journal Applications Toxicogical 21:245–55. doi:10.1002/(ISSN)1099-1263.
  • Ginsberg, G., B. Sonawane, R. Nath, and P. Lewandowski. 2014. Methylmercury-induced inhibition of paraoxonase-1 (PON-1)—Implications for cardiovascular risk. Journal Toxicogical Environment Health A 77:1004–23. doi:10.1080/15287394.2014.919837.
  • Goodrich, J. M., N. Basu, A. Franzblau, and D. C. Dolinoy. 2013. Mercury biomarkers and DNA methylation among Michigan dental professionals. Environmental and Molecular Mutagenesis 54:195–203. doi:10.1002/em.v54.3.
  • Goodrich, J. M., Y. Wang, B. Gillespie, R. Werner, A. Franzblau, and N. Basu. 2011. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals. Toxicology and Applied Pharmacology 257:301–08. doi:10.1016/j.taap.2011.09.014.
  • Grandjean, P., S. S. Brown, P. Reavey, and D. S. Young. 1994. Biomarkers of chemical exposure: State of the art. Clinical Chemistry 40:1360–62.
  • Grandjean, P., E. Budtz-Jørgensen, R. F. White, P. J. Jørgensen, P. Weihe, F. Debes, and N. Keiding. 1999. Methylmercury exposure biomarkers as indicators of neurotoxicity in children aged 7 years. American Journal of Epidemiology 150:301–05. doi:10.1093/oxfordjournals.aje.a010002.
  • Grandjean, P., K. Murata, E. Budtz-Jorgensen, and P. Weihe. 2004. Cardiac autonomic activity in methylmercury neurotoxicity: 14-years follow-up of a Faroese birth cohort. The Journal of Pediatrics 144:189–176. doi:10.1016/j.jpeds.2003.10.058.
  • Grandjean, P., P. Weihe, P. J. Jorgensen, T. Clarkson, E. Cernichiari, and T. Videro. 1992. Impact of maternal seafood diet on fetal exposure to mercury, selenium and lead. Archives of Environmental Health 47:185–95. doi:10.1080/00039896.1992.9938348.
  • Grandjean, P., P. Weihe, and R. F. White. 1995. Milestone development in infants exposed to methylmercury from human milk. Neurotoxicology 16:27–33.
  • Grandjean, P., P. Weihe, R. F. White, F. Debes, S. Araki, K. Yokoyama, K. Murata, N. Sørensen, R. Dahl, and P. J. Jørgensen. 1997. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicology Teratol 19:417–28. doi:10.1016/S0892-0362(97)00097-4.
  • Grintal, B., G. Champeil-Potokar, M. Lavialle, S. Vancassel, S. Breton, and I. Denis. 2009. Inhibition of astroglial glutamate transport by polyunsaturated fatty acids: Evidence for a signaling role of docosahexaenoic acid. Neurochemistry International 54:535–43. doi:10.1016/j.neuint.2009.02.018.
  • Grotto, D., J. Valentini, M. Fillion, C. J. S. Passos, S. C. Garcia, D. Mergler, and F. Barbosa Jr. 2010. Mercury exposure and oxidative stress in communities of the Brazilian Amazon. The Science of the Total Environment 408:806–11. doi:10.1016/j.scitotenv.2009.10.053.
  • Gundacker, C., K. J. Wittmann, M. Kukuckova, G. Komarnicki, I. Hikkel, and M. Gencik. 2009. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environmental Research 109:786–96. doi:10.1016/j.envres.2009.05.003.
  • Hagmar, L., M. Persson-Moschos, B. Åkesson, and A. Schütz. 1998. Plasma levels of selenium, selenoprotein P and glutathione peroxidase and their correlations to fish intake and serum levels of thyrotropin and thyroid hormones: A study on Latvian fish consumers. European Journal Clinical Nutritional 52:796–800. doi:10.1038/sj.ejcn.1600649.
  • Halbach, S., and T. W. Clarkson. 1978. Enzymatic oxidation of mercury vapour by erythrocytes. Biochimica Et Biophysica Acta 523:522–31. doi:10.1016/0005-2744(78)90055-4.
  • Hanna, C. W., M. S. Bloom, W. P. Robinson, D. Kim, P. J. Parsons, F. S. Vom Saal, J. A. Taylor, A. J. Steuerwald, and V. Y. Fujimoto. 2012. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Human Reprod 27:1401–10. doi:10.1093/humrep/des038.
  • Hatfield, D. L., P. A. Tsuji, B. A. Carlson, and V. N. Gladyshev. 2014. Selenium and selenocysteine: Roles in cancer, health, and development. Trends in Biochemical Sciences 39:112–20. doi:10.1016/j.tibs.2013.12.007.
  • Haut, M. W., L. A. Morrow, D. Pool, T. S. Callahan, J. S. Haut, and M. D. Franzen. 1999. Neurobehavioral effects of acute exposure to inorganic mercury vapor. Appl Neuropsychol 6:193–200. doi:10.1207/s15324826an0604_1.
  • Havarinasab, S., E. Björn, J. Ekstrand, and P. Hultman. 2007. Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 229:23–32. doi:10.1016/j.tox.2006.09.006.
  • Havarinasab, S., B. Häggqvist, E. Björn, K. M. Pollard, and P. Hultman. 2005. Immunosuppressive and autoimmune effects of Thimerosal in mice. Toxicology and Applied Pharmacology 204:109–21. doi:10.1016/j.taap.2004.08.019.
  • Havarinasab, S., and P. Hultman. 2005. Organic mercury compounds and autoimmunity. Autoimmun Reviews 4:270–75. doi:10.1016/j.autrev.2004.12.001.
  • Havarinasab, S., L. Lambertson, J. Qvarnström, and P. Hultman. 2004. Dose-response study of Thimerosal-induce murine systemic autoimmunity. Toxicology and Applied Pharmacology 194:169–79. doi:10.1016/j.taap.2003.09.006.
  • Heron, J., and J. Golding. 2004. Thimerosal exposure in infants and developmental disorders: A prospective cohort study in the United Kingdom does not support a causal association. Pediatrics 114:577–83. doi:10.1542/peds.2003-1176-L.
  • Heyer, N. J., D. Echeverria, A. C. Bittner Jr., F. M. Farin, C. C. Garabedian, and J. S. Woods. 2004. Chronic low-level mercury exposure, BDNF polymorphism, and associations with self-reported symptoms and mood. Toxicological Sciences 81:354–63. doi:10.1093/toxsci/kfh220.
  • Heyer, N. J., D. Echeverria, F. M. Farin, and J. S. Woods. 2008. The association between serotonin transporter gene promoter polymorphism (5-HTTLPR), self-reported symptoms, and dental mercury exposure. Journal Toxicogical Environment Health A 71:1318–26. doi:10.1080/15287390802240850.
  • Heyer, N. J., D. Echeverria, M. D. Martin, F. M. Farin, and J. S. Woods. 2009. Catechol O-Methyltransferase (COMT) VAL158MET functional polymorphism, dental mercury exposure, and self-reported symptoms and mood. Journal Toxicogical Environment Health A 72:599–609. doi:10.1080/15287390802706405.
  • Hoesel, B., and J. A. Schmid. 2013. The complexity of NF-kappaB signaling in inflammation and cancer. Molecular Cancer 12:86. doi:10.1186/1476-4598-12-86.
  • Hoffman, D. J., M. G. Spalding, and P. C. Frederick. 2005. Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environmental Toxicology and Chemistry 24:3078–84. doi:10.1897/04-570.1.
  • Horecker, B. L. 2002. The pentose phosphate pathway. Journal Biologic Chemical 277:47965–71. doi:10.1074/jbc.X200007200.
  • Huang, C. F., S. H. Liu, C. J. Hsu, and S. Y. Lin-Shiau. 2011. Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicology Letters 201:196–204. doi:10.1016/j.toxlet.2010.12.016.
  • Hussain, S., D. A. Rodgers, H. M. Duhart, and S. F. Ali. 1997. Mercuric chloride-induced reactive oxygen species and its effect on antioxidant enzymes in different regions of rat brain. Journal Environment Sciences Health, Particle B 32:395–409. doi:10.1080/03601239709373094.
  • Hviid, A., M. Stellfeld, J. Wohlfahrt, and M. Melbye. 2003. Association between thimerosal-containing vaccine and autism. Jam Medica Association 290:1763–66. doi:10.1001/jama.290.13.1763.
  • Hwang, G. W., J. Y. Lee, K. Ryoke, F. Matsuyama, J. M. Kim, T. Takahashi, and A. Naganuma. 2011. Gene expression profiling using DNA microarray analysis of the cerebellum of mice treated with methylmercury. Journal Toxicogical Sciences 36:389–91. doi:10.2131/jts.36.389.
  • Jain, A., G. J. Flora, R. Bhargava, and S. J. Flora. 2012. Influence of age on arsenic-induced oxidative stress in rat. Biologic Trace Elements Researcher 149:382–90. doi:10.1007/s12011-012-9432-7.
  • Jain, A. K., and A. K. Jaiswal. 2006. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. The Journal of Biological Chemistry 281:12132–42. doi:10.1074/jbc.M511198200.
  • Janssen-Heininger, Y. M., B. T. Mossman, N. H. Heintz, H. J. Forman, B. Kalyanaraman, T. Finkel, J. S. Stamler, S. G. Rhee, and A. Van Der Vliet. 2008. Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radical Biologic Medica 45:1–17. doi:10.1016/j.freeradbiomed.2008.03.011.
  • Jarosínska, D., M. Horvat, G. Sällsten, B. Mazzolai, B. Dąbkowska, A. Prokopowicz, M. Biesiada, and L. Barregård. 2008. Urinary mercury and biomarkers of early renal dysfunction in environmentally and occupationally exposed adults: A three-country study. Environmental Research 108:224–32. doi:10.1016/j.envres.2008.06.005.
  • Jayaprakash, K. 2009. Mercury vapor inhalation and its effect on glutathione peroxidase in goldsmiths exposed occupationally. Toxicogical Industrial Health 25:463–65. doi:10.1177/0748233709106769.
  • Jebbett, N. J., J. W. Hamilton, M. D. Rand, and F. Eckenstein. 2013. Low level methylmercury enhances CNTF-evoked STAT3 signaling and glial differentiation in cultured cortical progenitor cells. Neurotoxicology 38:91–100. doi:10.1016/j.neuro.2013.06.008.
  • Jin, X., N. Hidiroglou, E. Lok, M. Taylor, K. Kapal, N. Ross, K. Sarafin, A. Lau, A. De Souza, H. M. Chan, and E. Mehta. 2012. Dietary selenium (Se) and vitamin E (V(E)) supplementation modulated methylmercury-mediated changes in markers of cardiovascular diseases in rats. Cardiovascular Toxicology 12:10–24. doi:10.1007/s12012-011-9134-y.
  • Julvez, J., G. D. Smith, J. Golding, S. Ring, B. S. Pourcain, J. R. Gonzalez, and P. Grandjean. 2013. Prenatal methylmercury exposure and genetic predisposition to cognitive deficit at age 8 years. Epidemiology 24:643–50. doi:10.1097/EDE.0b013e31829d5c93.
  • Kalev-Zylinska, M. L., T. N. Green, M. C. Morel-Kopp, P. P. Sun, Y. E. Park, A. Lasham, M. J. During, and C. M. Ward. 2014. N-methyl-d-aspartate receptors amplify activation and aggregation of human platelets. Thrombosis Research 133:837–47. doi:10.1016/j.thromres.2014.02.011.
  • Kendall, R. J., T. A. Anderson, R. J. Baker, C. M. Bens, J. A. Carr, G. P. C. Chiodo, R. L. Dickerson, K. R. Dixon, L. T. Frame, M. J. Hooper, C. F. Martin, S. T. McMurry, R. Patino, E. E. Smith, and C. W. Theodorakis. 2001. Ecotoxicology. In Casarett and Doull’s toxicology. The basic science of poisons. Chapter 29, ed. C. D. Klaassen, 6th ed., 1013–45. New York: McGraw-Hill.
  • Khan, M. A. K., and F. Wang. 2009. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environmental Toxicology and Chemistry 28:1567–77. doi:10.1897/08-375.1.
  • Kim, M. S., T. Takahashi, J. Y. Lee, G. W. Hwang, and A. Naganuma. 2012. Methylmercury induces CCL2 expression through activation of NF-kappaB in human 1321N1 astrocytes. Journal Toxicogical Sciences 37:1275–78. doi:10.2131/jts.37.1275.
  • Kim, S. A., C. K. Jeon, and D. M. Paek. 2008. Hair mercury concentrations of children and mothers in Korea: Implication for exposure and evaluation. The Science of the Total Environment 402:36–42. doi:10.1016/j.scitotenv.2008.04.010.
  • Kobal, A. B., M. Horvat, M. Prezelj, A. S. Briski, M. Krsnik, T. Dizdarevic, D. Mazej, I. Falnoga, V. Stibilj, N. Arneric, D. Kobal, and J. Osredkar. 2004. The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. Journal Trace Elements Medica Biologic 17:262–74. doi:10.1016/S0946-672X(04)80028-2.
  • Kobal, A. B., M. Prezelj, M. Horvat, M. Krsnik, D. Gibicar, and J. Osredkar. 2008. Glutathione level after long-term occupational elemental mercury exposure. Environmental Research 107:115–23. doi:10.1016/j.envres.2007.07.001.
  • Kobayashi, A., M. I. Kang, Y. Watai, K. I. Tong, T. Shibata, K. Uchida, and M. Yamamoto. 2006. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Molecular and Cellular Biology 26:221–29. doi:10.1128/MCB.26.1.221-229.2006.
  • Kong, X., S. Wang, H. Jiang, G. Nie, and X. Li. 2012. Responses of acid/alkaline phosphatase, lysozyme, and catalase activities and lipid peroxidation to mercury exposure during the embryonic development of goldfish Carassius auratus. Aquatic Toxicology 120/121:119–25. doi:10.1016/j.aquatox.2012.05.005.
  • Kristensen, A. K. B., J. F. Thomsen, and S. Mikkelsen. 2014. A review of mercury exposure among artisanal small-scale gold miners in developing countries. International Archives of Occupational and Environmental Health 87:579–90. doi:10.1007/s00420-013-0902-9.
  • Kutscher, D. J., M. E. Del Castillo Busto, N. Zinn, A. Sanz-Medel, and J. Bettmer. 2008. Protein labelling with mercury tags: Fundamental studies on ovalbumin derivatised with p-hydroxymercuribenzoic acid (pHMB). Journal Analysis Atom Spectrometry 23:1359–64. doi:10.1039/b806118a.
  • Kwon, O. S., and Y. J. Park. 2003. In vitro and in vivo dose-dependent inhibition of methylmercury on glutamine synthetase in the brain of different species. Environmental Toxicology and Pharmacology 14:17–24. doi:10.1016/S1382-6689(03)00006-1.
  • Laffont, L., J. E. Sonke, L. Maurice, S. L. Monrroy, J. Chincheros, D. Amouroux, and P. Behra. 2011. Hg speciation and stable isotope signatures in human hair as a tracer for dietary and occupational exposure to mercury. Environmental Science & Technology 45:9910–16. doi:10.1021/es202353m.
  • LaKind, J. S., R. L. Brent, M. L. Dourson, S. Kacew, G. Koren, B. Sonawane, A. J. Tarzian, and K. Uhl. 2005. Human milk biomonitoring data: Interpretation and risk assessment issues. Journal Toxicogical Environment Health A 68:1713–69. doi:10.1080/15287390500225724.
  • LeBel, C. P., S. F. Ali, and S. C. Bondy. 1992. Deferoxamine inhibits methyl mercury-induced increases in reactive oxygen species formation in rat brain. Toxicology and Applied Pharmacology 112:161–65. doi:10.1016/0041-008X(92)90292-Z.
  • Lebel, J., D. Mergler, F. Branches, M. Lucotte, M. Amorim, and F. Larribe. 1998. Neurotoxic effects of low-level methyl mercury contamination in the Amazonian Basin. Environmental Research 79:20–32. doi:10.1006/enrs.1998.3846.
  • Lee, B. E., Y. C. Hong, H. Park, M. Ha, B. S. Koo, N. Chang, Y. M. Roh, B. N. Kim, Y. J. Kim, B. M. Kim, S. J. Jo, and E. H. Ha. 2010. Interaction between GSTM1/GSTT1 polymorphism and blood mercury on birth weight. Environ Health Persp 118:437–43. doi:10.1289/0900731.
  • Lee, J. Y., G. W. Hwang, M. S. Kim, T. Takahashi, and A. Naganuma. 2012. Methylmercury induces a brain-specific increase in chemokine CCL4 expression in mice. Journal Toxicogical Sciences 37:1279–82. doi:10.2131/jts.37.1279.
  • Lillig, C. H., and A. Holmgren. 2007. Thioredoxin and related molecules – from biology to health and disease. Antioxidants Redox Signalling 9:25–47. doi:10.1089/ars.2007.9.25.
  • Lin, T. H., Y. L. Huang, and S. F. Huang. 1996. Lipid peroxidation in liver of rats administrated with methyl mercuric chloride. Biologic Trace Elements Researcher 54:33–41. doi:10.1007/BF02785318.
  • Lin, Y. S., G. Ginsberg, J. W. Lin, and B. Sonawane. 2014. Mercury exposure and omega-3 fatty acid intake in relation to renal function in the US population. International Journal Hygiene Environment Health 217:465–72. doi:10.1016/j.ijheh.2013.09.004.
  • Lindow, S. W., R. Knight, J. Batty, and S. J. Haswell. 2003. Maternal and neonatal hair mercury concentrations: The effect of dental amalgam. British Journal of Obstetrics and Gynaecology 110:287–91. doi:10.1046/j.1471-0528.2003.02257.x.
  • Liu, X., G. F. Nordberg, and T. Jin. 1992. Increased urinary excretion of zinc and copper by mercuric chloride injection in rats. Biometals 5:17–22. doi:10.1007/BF01079693.
  • Llop, S., F. Ballester, and K. Broberg. 2015. Effect of gene-merury interactions on mercury toxicokinetics and neurotoxicity. Current Environment Heath Reports 2:179–94. doi:10.1007/s40572-015-0047-y.
  • Llop, S., K. Engström, F. Ballester, E. Franforte, A. Alhamdow, F. Pisa, J. S. Tratnik, D. Mazej, M. Murcia, M. Rebagliato, M. Bustamante, J. Sunyer, A. Sofianou-Katsoulis, A. Prasouli, E. Antonopoulou, I. Antoniadou, S. Nakou, F. Barbone, M. Horvat, and K. Broberg. 2014. Polymorphisms in ABC transporter genes and concentrations of mercury in newborns–evidence from two Mediterranean birth cohorts. Plos One 9:e97172. doi:10.1371/journal.pone.0097172.
  • Lu, J., E. H. Chew, and A. Holmgren. 2007. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proceedings National Academic Sciences USA 104:12288–93. doi:10.1073/pnas.0701549104.
  • Lu, J., and A. Holmgren. 2009. Selenoproteins. The Journal of Biological Chemistry 284:723–27. doi:10.1074/jbc.R800045200.
  • Lund, B., D. M. Miller, and J. S. Woods. 1991. Mercury-induced H2O2 production and lipid peroxidation in vitro in rat kidney and mitochondria. Biochemical Pharmacology 42:S181–187. doi:10.1016/0006-2952(91)90408-W.
  • Lund, B., D. M. Miller, and J. S. Woods. 1993. Studies on Hg(II)-induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochemical Pharmacology 45:2017–24. doi:10.1016/0006-2952(93)90012-L.
  • Madsen, K. M., M. B. Lauritsen, C. B. Pedersen, P. Thorsen, A.-M. Plesner, P. H. Andersen, and P. B. Mortensen. 2003. Thimerosal and the occurrence of autism: Negative ecological evidence from Danish population-based data. Pediatrics 112:604–06. doi:10.1542/peds.112.3.604.
  • Magos, L. 1997. Physiology and toxicology of mercury. In Metal Ions in biological systems, volume 34: Mercury and its effects on environment and biology, eds. A. Sigel, and H. Sigel, 321–70. New York: Marcel Dekker Inc.
  • Mahboob, M., K. F. Shireen, A. Atkinson, and A. T. Khan. 2001. Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury. Journal Environment Sciences Health, Particle B 36:687–97. doi:10.1081/PFC-100106195.
  • Maier, A., R. E. Savage Jr., and L. T. Haber. 2004. Assessing biomarker use in risk assessment–a survey of practitioners. Assessing biomarker use in risk assessment - a survey of practitioners. Journal Toxicogical Environment Health A 67:687–95. doi:10.1080/15287390490428161.
  • Manfroi, C. B., F. D. Schwalm, V. Cereser, F. Abreu, A. Oliveira, L. Bizarro, J. B. T. Rocha, M. E. Frizzo, D. O. Souza, and M. Farina. 2004. Maternal milk as methylmercury source for suckling mice: Neurotoxic effects involved with the cerebellar glutamatergic system. Toxicological Sciences 81:172–78. doi:10.1093/toxsci/kfh201.
  • Marks, G. S. 1985. Exposure to toxic agents: The heme biosynthetic pathway and hemoproteins as indicator. Critical Reviews in Toxicology 15:151–79. doi:10.3109/10408448509029323.
  • Marques, R. C., J. V. Bernardi, L. Abreu, and J. G. Dórea. 2015. Neurodevelopment outcomes in children exposed to organic mercury from multiple sources in a tin-ore mine environment in Brazil. A Rch Environment Contamination Toxicogical 68:432–41. doi:10.1007/s00244-014-0103-x.
  • Marques, R. C., J. V. Bernardi, J. G. Dórea, R. S. Leão, and O. Malm. 2013. Mercury transfer during pregnancy and breastfeeding: Hair mercury concentrations as biomarker. Biologic Trace Elements Researcher 154:326–32. doi:10.1007/s12011-013-9743-3.
  • Marques, R. C., J. G. Dórea, M. F. Fonseca, W. R. Bastos, and O. Malm. 2007. Hair mercury in breast-fed infants exposed to Thimerosal-preserved vaccines. European Journal of Pediatrics 166:935–41. doi:10.1007/s00431-006-0362-2.
  • Martinez, C. S., A. G. Escobar, J. G. Torres, D. S. Brum, F. W. Santos, M. J. Alonso, M. Salaices, D. V. Vassallo, F. M. Pecanha, F. G. Leivas, and G. A. Wiggers. 2014. Chronic exposure to low doses of mercury impairs sperm quality and induces oxidative stress in rats. Journal Toxicogical Environment Health A 77:143–54. doi:10.1080/15287394.2014.867202.
  • Martinez-Finley, E. J., S. Caito, J. C. Slaughter, and M. Aschner. 2013. The role of skn-1 in methylmercury-induced latent dopaminergic neurodegeneration. Neurochemical Research 38:2650–60. doi:10.1007/s11064-013-1183-0.
  • McMurtry, R. J., W. R. Snodgrass, and J. R. Mitchell. 1978. Renal necrosis, glutathione depletion, and covalent binding after acetaminophen. Toxicology and Applied Pharmacology 46:87–100. doi:10.1016/0041-008X(78)90139-4.
  • Meister, A. 1988. Glutathione metabolism and its selective modification. The Journal of Biological Chemistry 263:17205–08.
  • Merrick, B. A. 2006. Toxicoproteomics in liver injury and inflammation. Annals N Y Academic Sciences 1076:707–17. doi:10.1196/annals.1371.017.
  • Meyer-Baron, M., M. Schaeper, and A. Seeber. 2002. A meta-analysis for neurobehavioural results due to occupational mercury exposure. Archives of Toxicology 76:127–36. doi:10.1007/s00204-002-0327-9.
  • Miyamoto, K., H. Nakanishi, S. Moriguchi, N. Fukuyama, K. Eto, J. Wakamiya, K. Murao, K. Arimura, and M. Osame. 2001. Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity. Brain Research 901:252–58. doi:10.1016/S0006-8993(01)02281-8.
  • Moreira, E. L., J. De Oliveira, M. F. Dutra, D. B. Santos, C. A. Goncalves, E. M. Goldfeder, A. F. De Bem, R. D. Prediger, M. Aschner, and M. Farina. 2012. Does methylmercury-induced hypercholesterolemia play a causal role in its neurotoxicity and cardiovascular disease? Toxicological Sciences 130:373–82. doi:10.1093/toxsci/kfs252.
  • Morrow, J. D., K. E. Hill, R. F. Burk, T. M. Nammour, K. F. Badr, and L. J. Roberts 2nd. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proceedings National Academic Sciences USA 87:9383–87. doi:10.1073/pnas.87.23.9383.
  • Mottet, N. K., M. E. Vahter, J. S. Charleston, and L. T. Friberg. 1997. Metabolism of methylmercury in the brain and its toxicological significance. In Metal Ions in biological systems, volume 34: mercury and its effects on environment and biology, eds. A. Sigel, and H. Sigel, 371–403. New York: Marcel Dekker Inc.
  • Motts, J. A., D. L. Shirley, E. K. Silbergeld, and J. F. Nyland. 2014. Novel biomarkers of mercury-induced autoimmune dysfunction: A cross-sectional study in Amazonian Brazil. Environmental Research 132:12–18. doi:10.1016/j.envres.2014.03.024.
  • Mustacich, D., and G. Powis. 2000. Thioredoxin reductase. The Biochemical Journal 346:1–8. doi:10.1042/bj3460001.
  • Myers, G., P. W. Davidson, C. F. Shamlaye, C. D. Axtell, E. Cernichiari, O. Choisy, A. Choi, C. Cox, and T. W. Clarkson. 1997. Effects of prenatal methylmercury exposure from a high fish diet on developmental milestones in the Seychelles child development study. Neurotoxicology 18:819–30.
  • Myers, G. J., P. W. Davidson, C. Cox, C. Shamlaye, D. Palumbo, E. Cernichiari, J. Sloane-Reeves, G. E. Wilding, J. Kost, L.-S. Haung, and T. W. Clarkson. 2003. Prenatal methylmercury exposure from ocean fish consumption in the Seychelles Child Development Study. Lancet 361:1686–92. doi:10.1016/S0140-6736(03)13371-5.
  • Nath, K. A., A. J. Croatt, S. Likely, T. W. Behrens, and D. Warden. 1996. Renal oxidant injury and oxidant response induced by mercury. Kidney International 50:1032–43. doi:10.1038/ki.1996.406.
  • National Research Council (NRC). 1987. Biological markers in environmental health research. Environment Health Persp 74:3–9.
  • National Research Council (NRC). 2000. Toxicological effects of Methylmercury. Washington, DC: National Academy Press.
  • Neal, P. A. 1938. Mercury poisoning from the public health viewpoint. American Journal Public Health 28:907–15. doi:10.2105/AJPH.28.8.907.
  • Ng, S., C. C. Lin, Y. H. Hwang, W. S. Hsieh, H. F. Liao, and P. C. Chen. 2013. Mercury, APOE, and children’s neurodevelopment. Neurotoxicology 37:85–92. doi:10.1016/j.neuro.2013.03.012.
  • Ni, M., X. Li, Z. Yin, H. Jiang, M. Sidoryk-Wegrzynowicz, D. Milatovic, J. Cai, and M. Aschner. 2010. Methylmercury induces acute oxidative stress, altering Nrf2 protein level in primary microglial cells. Toxicological Sciences 116:590–603. doi:10.1093/toxsci/kfq126.
  • Nielsen, J. B., and P. Hultman. 2002. Mercury-induced autoimmunity in mice. Environment Health Persp 110:877–81. doi:10.1289/ehp.02110s5877.
  • Niture, S. K., R. Khatri, and A. K. Jaiswal. 2014. Regulation of Nrf2-an update. Free Radical Biologic Medica 66:36–44. doi:10.1016/j.freeradbiomed.2013.02.008.
  • Nunes, E., A. Cavaco, and C. Carvalho. 2014a. Children’s health risk and benefits of fish consumption: Risk indices based on a diet diary follow-up of two weeks. Journal Toxicogical Environment Health A 77:103–14. doi:10.1080/15287394.2014.866926.
  • Nunes, E., A. Cavaco, and C. Carvalho. 2014b. Exposure assessment of pregnant Portuguese women to methylmercury through the ingestion of fish: Cross-sectional survey and biomarker validation. Journal Toxicogical Environment Health A 77:133–42. doi:10.1080/15287394.2014.867200.
  • Nyland, J. F., M. Fillion, F. Barbosa, D. L. Shirley, C. Chine, M. Lemire, D. Mergler, and E. K. Silbergeld. 2011. Biomarkers of methylmercury exposure immunotoxicity among fish consumers in Amazonian Brazil. Environment Health Persp 119:1733–38. doi:10.1289/ehp.1103741.
  • Ohno, T., M. Sakamoto, T. Kurosawa, M. Dakeishia, T. Iwata, and K. Murataa. 2007. Total mercury levels in hair, toenail, and urine among women free from occupational exposure and their relations to renal tubular function. Environmental Research 103:191–97. doi:10.1016/j.envres.2006.06.009.
  • Oliveira, R. C., J. G. Dórea, J. V. Bernardi, W. R. Bastos, R. Almeida, and A. G. Manzatto. 2010. Fish consumption by traditional subsistence villagers of the Rio Madeira (Amazon): Impact on hair mercury. Annals of Human Biology 37:629–42. doi:10.3109/03014460903525177.
  • Oppedisano, F., M. Galluccio, and C. Indiveri. 2010. Inactivation by Hg2+ and methylmercury of the glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: Prediction of the involvement of a CXXC motif by homology modelling. Biochemical Pharmacology 80:1266–73. doi:10.1016/j.bcp.2010.06.032.
  • Ou, L., C. Chen, L. Chen, H. Wang, T. Yang, H. Xie, Y. Tong, D. Hu, W. Zhang, and X. Wang. 2015. Low-level prenatal mercury exposure in north China: An exploratory study of anthropometric effects. Environmental Science & Technology 49:6899–908. doi:10.1021/es5055868.
  • Pantano, C., N. L. Reynaert, A. Van Der Vliet, and Y. M. Janssen-Heininger. 2006. Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxidants & Redox Signaling 8:1791–806. doi:10.1089/ars.2006.8.1791.
  • Papp, L. V., J. Lu, A. Holmgren, and K. K. Khanna. 2007. From selenium to selenoproteins: Synthesis, identity and their role in human health. Antioxidants & Redox Signaling 9:775–806. doi:10.1089/ars.2007.1528.
  • Parajuli, R. P., J. M. Goodrich, H. N. Chou, S. E. Gruninger, D. C. Dolinoy, A. Franzblau, and N. Basu. 2016. Genetic polymorphisms are associated with hair, blood, and urine mercury levels in the American Dental Association (ADA) study participants. Environmental Research 149:247–58. doi:10.1016/j.envres.2015.11.032.
  • Park, S. T., K. T. Lim, Y. T. Chung, and S. U. Kim. 1996. Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. Neurotoxicology 17:37–45.
  • Pastore, A., G. Federici, E. Bertini, and F. Piemonte. 2003. Analysis of glutathione: Implication in redox and detoxification. Clinica Chimica Acta 333:19–39. doi:10.1016/S0009-8981(03)00200-6.
  • Paustenbach, D. J. 2001. The practice of exposure assessment. In Principles and methods of toxicology. Chapter 9, ed. A. W. Hayes, 387–448. Philadelphia: Taylor & Francis.
  • Perrin-Nadif, R., M. Dusch, C. Koch, P. Schmitt, and J. M. Mur. 1996. Catalase and superoxide dismutase activities as biomarkers of oxidative stress in workers exposed to mercury vapors. Journal Toxicogical Environment Health 7:107–19. doi:10.1080/009841096161366.
  • Piccoli, C., A. D’Aprile, R. Scrima, L. Ambrosi, R. Zefferino, and N. Capitanio. 2012. Subcytotoxic mercury chloride inhibits gap junction intercellular communication by a redox- and phosphorylation-mediated mechanism. Free Radical Biologic Medica 52:916–27. doi:10.1016/j.freeradbiomed.2011.12.018.
  • Pingree, S. D., P. L. Simmonds, K. T. Rummel, and J. S. Woods. 2001. Quantitative evaluation of urinary porphyrins as a measure of kidney mercury content and mercury body burden during prolonged methylmercury exposure in rats. Toxicological Sciences 61:234–40. doi:10.1093/toxsci/61.2.234.
  • Pinheiro, M. C., B. M. Macchi, J. L. Vieira, T. Oikawa, W. W. Amoras, G. A. Guimarães, C. A. Costa, M. E. Crespo-López, A. M. Herculano, L. C. Silveira, and J. L. M. Do Nascimento. 2008. Mercury exposure and antioxidant defenses in women: A comparative study in the Amazon. Environmental Research 107:53–59. doi:10.1016/j.envres.2007.08.007.
  • Piotrowski, J. K., B. Trojanowska, J. M. Wiśniewska-Knypl, and W. Bolanowska. 1974. Mercury binding in the kidney and liver of rats repeatedly exposed to mercuric chloride: Induction of metallothionein by mercury and cadmium. Toxicology and Applied Pharmacology 27:11–19. doi:10.1016/0041-008X(74)90169-0.
  • Pollack, A. Z., S. L. Mumford, P. Mendola, N. J. Perkins, Y. Rotman, J. Wactawski-Wende, and E. F. Schisterman. 2015. Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: A prospective cohort study. Journal Toxicogical Environment Health A 78:119–31. doi:10.1080/15287394.2014.944680.
  • Pollack, A. Z., E. F. Schisterman, L. R. Goldman, S. L. Mumford, N. J. Perkins, M. S. Bloom, C. B. Rudra, R. W. Browne, and J. Wactawski-Wende. 2012. Relation of blood cadmium, lead, and mercury levels to biomarkers of lipid peroxidation in premenopausal women. American Journal of Epidemiology 175:645–52. doi:10.1093/aje/kwr375.
  • Pollard, K. M., and P. Hultman. 1997. Effects of mercury in the immune system. In Metal Ions in biological systems, volume 34: Mercury and its effects on environment and biology, eds. A. Sigel, and H. Sigel, 421–60. New York: Marcel Dekker Inc.
  • Pollard, K. M., and D. H. Kono. 2013. Requirements for innate immune pathways in environmentally induced autoimmunity. BMC Medicine 11:100. doi:10.1186/1741-7015-11-100.
  • Qu, H., T. Syversen, M. Aschner, and U. Sonnewald. 2003. Effect of methylmercury on glutamate metabolism in cerebellar astrocytes in culture. Neurochemistry International 43:411–16. doi:10.1016/S0197-0186(03)00029-9.
  • Ratcliffe, H. E., G. M. Swanson, and L. J. Fischer. 1996. Human exposure to mercury: A critical assessment of the evidence of adverse health effects. Journal Toxicogical Environment Health 49:221–70. doi:10.1080/00984108.1996.11667600.
  • Rigobello, M. P., G. Scutari, A. Folda, and A. Bindoli. 2004. Mitochondrial thioredoxin reductase inhibition by gold(I) compounds and concurrent stimulation of permeability transition and release of cytochrome c. Biochemical Pharmacology 67:689–96. doi:10.1016/j.bcp.2003.09.038.
  • Robinson, J. F., P. T. Theunissen, D. A. Van Dartel, J. L. Pennings, E. M. Faustman, and A. H. Piersma. 2011. Comparison of MeHg-induced toxicogenomic responses across in vivo and in vitro models used in developmental toxicology. Reproductive Toxicology 32:180–88. doi:10.1016/j.reprotox.2011.05.011.
  • Rocha, J. B., A. J. Freitas, M. B. Marques, M. E. Pereira, T. Emanuelli, and D. O. Souza. 1993. Effects of methylmercury exposure during the second stage of rapid postnatal brain growth on negative geotaxis and on delta-aminolevulinate dehydratase of suckling rats. Brazilian Journal of Medical and Biological Research 26:1077–83.
  • Rodrigues, J., V. Branco, J. Lu, A. Holmgren, and C. Carvalho. 2015. Toxicological effects of thiomersal and ethylmercury: Inhibition of the thioredoxin system and NADP+-dependent dehydrogenases of the pentose phosphate pathway. Toxicology and Applied Pharmacology 286:216–23. doi:10.1016/j.taap.2015.05.002.
  • Romero, D. L., B. J. Mounho, F. T. Lauer, J. L. Born, and S. W. Burchiel. 1997. Depletion of glutathione by benzo(a)pyrene metabolites, ionomycin, thapsigargin, and phorbol myristate in human peripheral blood mononuclear cells. Toxicology and Applied Pharmacology 144:62–69. doi:10.1006/taap.1997.8113.
  • Rooney, J. P. K. 2007. The role of thiols, dithiols, nutritional factors and interacting ligands in the toxicology of mercury. Toxicology 234:145–56. doi:10.1016/j.tox.2007.02.016.
  • Ruszkiewicz, J. A., A. B. Bowman, M. Farina, J. B. Rocha, and M. Aschner. 2016. Sex-and structure-specific differences in antioxidant responses to methylmercury during early development. NeuroToxicology 56:118–26. doi:10.1016/j.neuro.2016.07.009.
  • Sakai, T. 2000. Biomarkers of lead exposure. Industrial Health 38:127–42. doi:10.2486/indhealth.38.127.
  • Samir, A. M., and W. M. Aref. 2011. Impact of occupational exposure to elemental mercury on some antioxidative enzymes among dental staff. Toxicogical Industrial Health 27:779–86. doi:10.1177/0748233710397420.
  • Sanders, A. P., H. H. Burris, A. C. Just, V. Motta, C. Amarasiriwardena, K. Svensson, E. Oken, M. Solano-Gonzalez, A. Mercado-Garcia, I. Pantic, J. Schwartz, M. M. Tellez-Rojo, A. A. Baccarelli, and R. O. Wright. 2015. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics 7:885–96. doi:10.2217/epi.15.54.
  • Santos, A. P. M., M. L. Mateus, C. M. L. Carvalho, and M. C. C. Batoréu. 2007. Biomarkers of exposure and effect as indicators of the interference of selenomethionine on methylmercury toxicity. Toxicology Letters 169:121–28. doi:10.1016/j.toxlet.2006.12.007.
  • Satoh, H. 2000. Occupational and environmental toxicology of mercury and its compounds. Industrial Health 38:153–64. doi:10.2486/indhealth.38.153.
  • Savabieasfahani, M., M. Hoseiny, and S. Goodarzi. 2012. Toxic and essential trace metals in first baby haircuts and mother hair from Imam Hossein Hospital Tehran, Iran. Bulletin Environment Contamination Toxicogical 88:140–44. doi:10.1007/s00128-011-0487-5.
  • Schläwicke-Engström, K., U. Strömberg, T. Lundh, I. Johansson, B. Vessby, G. Hallmans, S. Skerfving, and K. Broberg. 2008. Genetic variation in glutathione-related genes and body burden of methylmercury. Environment Health Persp 116:734–39. doi:10.1289/ehp.10804.
  • Schmidt, C. W. 2006. Signs of the times: Biomarkers in perspective. Environment Health Persp 114:A700–705. doi:10.1289/ehp.114-a700.
  • Scientific Committee on Occupational Exposure Limits (SCOEL). 2007. Recommendation from the Scientific Committee on Occupational Exposure Limits for elemental mercury and inorganic divalent mercury compounds. European Commission, SCOEL/SUM/84. ec.europa.eu/social/BlobServlet?docId=3852&langId=en
  • Shanker, G., J. W. Allen, L. A. Mutkus, and M. Aschner. 2001. Methylmercury inhibits cysteine uptake in cultured primary astrocytes, but not in neurons. Brain Research 914:159–65. doi:10.1016/S0006-8993(01)02791-3.
  • Shanker, G., and M. Aschner. 2001. Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: Evidence for methylmercury-targeted disruption of astrocytic transport. Journal of Neuroscience Research 66:998–1002. doi:10.1002/jnr.10066.
  • Shanker, G., T. Syversen, and M. Aschner. 2003. Astrocyte-mediated methylmercury neurotoxicity. Biologic Trace Elements Researcher 95:1–10. doi:10.1385/BTER:95:1:1.
  • Sherratt, P. J., H. C. Huang, T. Nguyen, and C. B. Pickett. 2004. Role of protein phosphorylation in the regulation of NF-E2-related factor 2 activity. Meth Enzymol 378:286–301.
  • Sikorski, R., T. Paszkowski, and T. Szprengier-Juszkiewicz. 1986. Mercury in neonatal scalp hair. The Science of the Total Environment 57:105–10. doi:10.1016/0048-9697(86)90015-X.
  • Silbergeld, E. K., and D. L. Davis. 1994. Role of biomarkers in identifying and understanding environmentally induced disease. Clinical Chemistry 40:1363–67.
  • Silva De Paula, E., M. F. Carneiro, D. Grotto, L. C. Hernandes, L. M. Antunes, and F. Barbosa Jr. 2016. Protective effects of niacin against methylmercury-induced genotoxicity and alterations in antioxidant status in rats. Journal Toxicogical Environment Health, A 79:174–83. doi:10.1080/15287394.2015.1137264.
  • Simmons-Willis, T. A., A. S. Koh, T. W. Clarkson, and N. Ballatori. 2002. Transport of a neurotoxicant by molecular mimicry: The methylmercury–L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2. The Biochemical Journal 367:239–46. doi:10.1042/bj20020841.
  • Srivastava, M., S. Singh, and W. T. Self. 2012. Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environment Health Persp 120:56–61. doi:10.1289/ehp.1103928.
  • Stehr-Green, P., P. Tullb, M. Stellfeld, P. Mortenson, and D. Simpson. 2003. Autism and thimerosal-containing vaccines: Lack of consistent evidence for an association. American Journal Prevention Medica 25:101–06. doi:10.1016/S0749-3797(03)00113-2.
  • Stringari, J., A. K. Nunes, J. L. Franco, D. Bohrer, S. C. Garcia, A. L. Dafre, D. Milatovic, D. O. Souza, J. B. Rocha, M. M. Aschner, and M. Farina. 2008. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicology and Applied Pharmacology 227:147–54. doi:10.1016/j.taap.2007.10.010.
  • Suda, I., and H. Takahashi. 1992. Degradation of methyl and ethyl mercury into inorganic mercury by other reactive oxygen species besides hydroxyl radical. Archives of Toxicology 66:34–39.
  • Sugiura, Y., Y. Hojo, Y. Tamai, and H. Tanaka. 1976. Selenium protection against mercury toxicity. Binding of methylmercury by the selenohydryl-containing ligand. Journal of the American Chemical Society 98:2339–41.
  • Suzuki, K. T., and Y. Ogra. 2001. Metabolism of selenium and its interaction with mercury: Mechanisms by a speciation study. Phosphorus, Sulfur Silicon Related Elements 171:135–69.
  • Sweet, L. I., and J. T. Zelikoff. 2001. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. Journal Toxicogical Environment Health B 4:161–205.
  • Tan, Y.-M., J. Sobus, D. Chang, R. Tornero-Velez, M. Goldsmith, J. Pleil, and C. Daty. 2012. Reconstructing human exposures using biomarkers and other “clues’. Journal Toxicogical Environment Health B 15:22–38.
  • Taylor, L. E., A. L. Swerdfeger, and G. D. Eslick. 2014. Vaccines are not associated with autism: An evidence-based meta-analysis of case-control and cohort studies. Vaccine 32:3623–29.
  • Theunissen, P. T., J. L. Pennings, J. F. Robinson, S. M. Claessen, J. C. Kleinjans, and A. H. Piersma. 2011. Time-response evaluation by transcriptomics of methylmercury effects on neural differentiation of murine embryonic stem cells. Toxicological Sciences 122:437–47.
  • Tian, L., H. F. Guo, A. Gao, X. T. Lu, and Q. Y. Li. 2009. Effects of mercury released from glold extraction by amalgamation on renal function and environment in Shanxi, China. Bulletin Environment Contamination Toxicogical 83:71–74.
  • Timbrell, J. A. 1998. Biomarkers in toxicology. Toxicology 129:1–12.
  • Toyama, T., Y. Shinkai, D. Sumi, and Y. Kumagai. 2010. Carbon monoxide derived from heme oxygenase-2 mediates reduction of methylmercury toxicity in SH-SY5Y cells. Toxicology and Applied Pharmacology 249:86–90.
  • Toyama, T., Y. Shinkai, A. Yasutake, K. Uchida, M. Yamamoto, and Y. Kumagai. 2011a. Isothiocyanates reduce mercury accumulation via an Nrf2-dependent mechanism during exposure of mice to methylmercury. Environment Health Persp 119:1117–22.
  • Toyama, T., D. Sumi, Y. Shinkai, A. Yasutake, K. Taguchi, K. I. Tong, M. Yamamoto, and Y. Kumagai. 2007. Cytoprotective role of Nrf2/Keap1 system in methylmercury toxicity. Biochemical and Biophysical Research Communications 363:645–50.
  • Toyama, T., E. Yoshida, Y. Shinkai, and Y. Kumagai. 2011b. DNA microarray analysis of human neuroblastoma SH-SY5Y cells exposed to methylmercury. Journal Toxicogical Sciences 36:843–45.
  • Uno, Y., T. Uchiyama, M. Kurosawa, B. Aleksic, and N. Ozaki. 2015. Early exposure to the combined measles–mumps–rubella vaccine and thimerosal-containing vaccines and risk of autism spectrum disorder. Vaccine 33:2511–16.
  • Usuki, F., A. Yamashita, and M. Fujimura. 2011. Post-transcriptional defects of antioxidant selenoenzymes cause oxidative stress under methylmercury exposure. The Journal of Biological Chemistry 286:6641–49.
  • Vahter, M. E., N. K. Mottet, L. T. Friberg, S. B. Lind, J. S. Charleston, and T. M. Burbacher. 1995. Demethylation of methylmercury in different brain sites of Macaca fascicularis monkeys during long-term subclinical methylmercury exposure. Toxicology and Applied Pharmacology 134:273–84.
  • Vanduyn, N., R. Settivari, G. Wong, and R. Nass. 2010. SKN-1/Nrf2 inhibits dopamine neuron degeneration in a Caenorhabditis elegans model of methylmercury toxicity. Toxicological Sciences 118:613–24.
  • Vas, J., and M. Monestier. 2008. Immunology of mercury. Annals N Y Academic Sciences 1143:240–67.
  • Vendrell, I., M. Carrascal, M. T. Vilaro, J. Abian, E. Rodriguez-Farre, and C. Sunol. 2007. Cell viability and proteomic analysis in cultured neurons exposed to methylmercury. Human & Experimental Toxicology 26:263–72.
  • Verstraeten, T., R. L. Davis, F. DeStefano, T. A. Lieu, P. H. Rhodes, S. B. Black, H. Shinefield, and R. T. Chen. 2003. Safety of thimerosal-containing vaccines: A two-phased study of computerized health maintenance organization databases. Pediatrics 112:1039–48.
  • Wagner, C., J. H. Sudati, C. W. Nogueira, and J. B. Rocha. 2010. In vivo and in vitro inhibition of mice thioredoxin reductase by methylmercury. Biometals 23:1171–77.
  • Wallace, M. A. G., T. M. Kormos, and J. Pleil. 2016. Blood-bornebiomarkers and bioindicators for linking exposure to health effects in environmental health science. Journal Toxicogical Environment Health B 19:380–409.
  • Wang, L., H. Jiang, Z. Yin, M. Aschner, and J. Cai. 2009. Methylmercury toxicity and Nrf2-dependent detoxification in astrocytes. Toxicological Sciences 107:135–43.
  • Wang, Y., J. M. Goodrich, B. Gillespie, R. Werner, N. Basu, and A. Franzblau. 2012. An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environment Health Persp 120:530–34.
  • Wang, Y., D. Wang, J. Wu, B. Wang, L. Wang, X. Gao, H. Huang, and H. Ma. 2015. Cinnabar induces renal inflammation and fibrogenesis in rats. Biomed Researcher International 2015:ID280958.
  • Wataha, J. C., J. B. Lewis, V. V. McCloud, M. Shaw, Y. Omata, P. E. Lockwood, R. L. W. Messer, and J. M. Hansen. 2008. Effect of mercury (II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes. Dent Materials 24:765–72.
  • Watanabe, C. 2002. Modification of mercury toxicity by selenium: Practical importance? The Tohoku Journal of Experimental Medicine 196:71–77.
  • Watanabe, C., Y. Kasanuma, Y. Dejima, and H. Satoh. 1999a. The effect of prenatal methylmercury exposure on the GSH level and lipid peroxidation in the fetal brain and placenta of mice. The Tohoku Journal of Experimental Medicine 187:121–26.
  • Watanabe, C., K. Yin, Y. Kasanuma, and H. Satoh. 1999b. In utero exposure to methylmercury and Se deficiency converge on the neurobehavioral outcome in mice. Neurotoxicology Teratol 21:83–88.
  • Wigle, D. T., T. E. Arbuckle, M. C. Turner, A. Bérubé, Q. Yang, S. Liu, and D. Krewski. 2008. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. Journal Toxicogical Environment Health B 11:373–517.
  • Witte, A. B., K. Anestål, E. Jerremalm, H. Ehrsson, and E. S. Arnér. 2005. Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radical Biologic Medica 39:696–703.
  • Woods, J. S. 1995. Porphyrin metabolism as indicator of metal exposure and toxicity. In Handbook of experimental pharmacology, vol. 105 – toxicology of metal—biochemical aspects, eds. R. A. Goyer, and M. G. Cherian, 19–52. Berlin, Germany: Springer-Verlag.
  • Woods, J. S., M. A. Bowers, and H. A. Davis. 1991. Urinary porphyrin profiles as biomarkers of trace metal exposure and toxicity: Studies on urinary porphryin excretion patterns in rats during prolonged exposure to methylmercury. Toxicogical Applpharmacol 110:464–76.
  • Woods, J. S., D. Echeverria, N. J. Heyer, P. L. Simmonds, J. Wilkerson, and F. M. Farin. 2005. The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphyrinogenic response to mercury exposure in humans. Toxicogical Applpharmacol 206:113–20.
  • Woods, J. S., and B. A. Fowler. 1977. Renal porphyrinuria during chronic methyl mercury exposure. The Journal of Laboratory and Clinical Medicine 90:266–72.
  • Woods, J. S., and B. A. Fowler. 1978. Altered regulation of mammalian hepatic heme biosynthesis and urinary porphyrin excretion during prolonged exposure to sodium arsenate. Toxicology and Applied Pharmacology 43:361–71.
  • Woods, J. S., N. Heyer, J. E. Russo, M. D. Martin, P. B. Pillai, and F. M. Farin. 2013. Modification of neurobehavioral effects of mercury by genetic polymorphisms of metallothionein in children. Neurotoxicology Teratol 39:36–44.
  • Woods, J. S., N. J. Heyer, D. Echeverria, J. E. Russo, M. D. Martin, M. F. Bernardo, H. S. Luis, L. Vaz, and F. M. Farin. 2012. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicology Teratol 34:513–21.
  • Woods, J. S., N. J. Heyer, J. E. Russo, M. D. Martin, and F. M. Farin. 2014a. Genetic polymorphisms affecting susceptibility to mercury neurotoxicity in children: Summary findings from the Casa Pia children’s amalgam clinical trial. Neurotoxicology 44:288–302.
  • Woods, J. S., N. J. Heyer, J. E. Russo, M. D. Martin, P. B. Pillai, T. K. Bammler, and F. M. Farin. 2014b. Genetic polymorphisms of catechol-O-methyltransferase modify the neurobehavioral effects of mercury in children. Journal Toxicogical Environment Health A 77:293–312.
  • Woods, J. S., M. D. Martin, B. G. Leroux, T. A. DeRouen, M. F. Bernardo, H. S. Luis, J. G. Leitão, P. L. Simmonds, D. Echeverria, and T. C. Rue. 2009. Urinary porphyrin excretion in children with mercury amalgam treatment: Findings from the Casa Pia children’s dental amalgam trial. Journal Toxicogical Environment Health A 72:891–96.
  • Woods, J. S., M. D. Martin, C. A. Naleway, and D. Echeverria. 1993. Urinary porphyrin profiles as a biomarker of mercury exposure: Studies on dentists with occupational exposure to mercury vapor. Journal Toxicogical Environment Health 40:235–46.
  • World Health Organization (WHO). 1993. Biomarkers and risk assessment: Concepts and principles. International programme on chemical safety, environmental health criteria 155, Geneva, 82. World Health Organization, Geneva, Switzerland. http://www.inchem.org/documents/ehc/ehc/ehc155.htm
  • World Health Organization (WHO). 2003. Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects. Sixty-first report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 922, Geneva, 176. World Health Organization, Geneva, Switzerland. http://www.who.int/ipcs/publications/cicad/en/cicad50.pdf
  • World Health Organization/United Nations Environment Programme (WHO/UNEP). 2008. Guidance for identifying populations at risk from mercury exposure, 170. World Health Organization, Geneva, Switzerland: Inter-Organization Programme for the Sound Management of Chemicals.
  • Wormser, U., B. Brodsky, D. Milatovic, Y. Finkelstein, M. Farina, J. B. Rocha, and M. Aschner. 2012. Protective effect of a novel peptide against methylmercury-induced toxicity in rat primary astrocytes. Neurotoxicology 33:763–68.
  • Yadetie, F., O. A. Karlsen, A. Lanzen, K. Berg, P. Olsvik, C. Hogstrand, and A. Goksoyr. 2013. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquatic Toxicology 126:314–25.
  • Yang, D., C. Yu-Wei, J. M. Gunn, and N. Belzille. 2008. Selenium and mercury in organisms: Interactions and mechanisms. Environment Reviews 16:71–92.
  • Yasutake, A., K. Hirayma, and M. Inoue. 1989. Mechanism of urinary excretion of methylmercury in mice. Archives of Toxicology 63:479–83.
  • Yasutake, A., and M. Nakamura. 2011. Induction by mercury compounds of metallothioneins in mouse tissues: Inorganic mercury accumulation is not a dominant factor for metallothionein induction in the liver. Journal Toxicogical Sciences 36:365–72.
  • Yeter, D., and R. Deth. 2012. ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by Thimerosal’s effects on calcium signaling via IP3. Autoimmun Reviews 11:903–08.
  • Yin, Z., D. Milatovic, J. L. Aschner, T. Syversen, J. B. Rocha, D. O. Souza, M. Sidoryk, J. Albrecht, and M. Aschner. 2007. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes. Brain Research 1131:1–10.
  • Yoshida, E., Y. Abiko, and Y. Kumagai. 2014. Glutathione adduct of methylmercury activates the Keap1-Nrf2 pathway in SH-SY5Y Cells. Chemical Research in Toxicology 27:1780–86.
  • Yu, R., S. Mandlekar, W. Lei, W. E. Fahl, T. H. Tan, and A. N. Kong. 2000. p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. The Journal of Biological Chemistry 275:2322–27.
  • Zabiński, Z., Z. Dabrowski, P. Moszczyński, and J. Rutowski. 2000. The activity of erythrocyte enzymes and basic indices of peripheral blood erythrocytes from workers chronically exposed to mercury vapours. Toxicogical Industrial Health 16:58–64.
  • Zalups, R. K. 1998. Basolateral uptake of mercuric conjugates of N-acetylcysteine and cysteine in the kidney involves the organic anion transport system. Journal Toxicogical Environment Health A 55:13–29.
  • Zalups, R. K. 2000. Molecular interactions with mercury in the kidney. Pharmacological Reviews 52:113–43.
  • Zalups, R. K., and D. W. Barfuss. 2002a. Renal organic anion transport system: A mechanism for the basolateral uptake of mercury-thiol conjugates along the pars recta of the proximal tubule. Toxicology and Applied Pharmacology 182:234–43.
  • Zalups, R. K., and D. W. Barfuss. 2002b. Simultaneous coexposure to inorganic mercury and cadmium: A study of the renal and hepatic disposition of mercury and cadmium. Journal Toxicogical Environment Health A 65:1471–90.
  • Zalups, R. K., D. W. Barfuss, and P. J. Kostyniak. 1992. Altered intrarenal accumulation of mercury in uninephrectomized rats treated with methylmercury chloride. Toxicology and Applied Pharmacology 115:174–82.
  • Zalups, R. K., L. Joshee, and C. C. Bridges. 2014. Novel Hg2+-induced Nephropathy in rats and mice lacking Mrp2: Evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule. Toxicological Sciences 142:250–60.
  • Zemolin, A. P., D. F. Meinerz, M. T. De Paula, D. O. Mariano, J. B. Rocha, A. B. Pereira, T. Posser, and J. L. Franco. 2012. Evidences for a role of glutathione peroxidase 4 (GPx4) in methylmercury induced neurotoxicity in vivo. Toxicology 302:60–67.
  • Zhang, J., R. P. Brown, M. Shaw, V. S. Vaidya, Y. Zhou, P. Espandiari, N. Sadrieh, M. Stratmeyer, J. Keenan, C. G. Kilty, J. V. Bonventre, and P. L. Goering. 2008. Immunolocalization of Kim-1, RPA-1, and RPA-2 in kidney of gentamicin-, mercury-, or chromium- treated rats: Relationship to renal distributions of iNOS and nitrotyrosine. Toxicogical Pathologists 36:397–409.
  • Zhou, Y., V. S. Vaidya, R. P. Brown, J. Zhang, B. A. Rosenzweig, K. L. Thompson, T. J. Miller, J. V. Bonventre, and P. L. Goering. 2008. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury and chromium. Toxicology Science 101:159–70.
  • Zimmermann, L. T., D. B. Dos Santos, D. Colle, A. A. Dos Santos, M. A. Hort, S. C. Garcia, L. P. Bressan, D. Bohrer, and M. Farina. 2014. Methionine stimulates motor impairment and cerebellar mercury deposition in methylmercury-exposed mice. Journal Toxicogical Environment Health A 77:46–56.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.