4,142
Views
317
CrossRef citations to date
0
Altmetric
Reviews

Triclosan exposure, transformation, and human health effects

&

References

  • Ahn, K. C., B. Zhao, J. Chen, G. Cherednichenko, E. Sanmarti, M. S. Denison, B. Lasley, I. N. Pessah, D. Kultz, D. P. Chang, S. J. Gee, and B. D. Hammock. 2008. In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environ Health Persp 116:1203–1210. doi:10.1289/ehp.11200.
  • Ajao, C., M. A. Andersson, V. V. Teplova, S. Nagy, C. G. Gahmberg, L. C. Andersson, M. Hautaniemi, B. Kakasi, M. Roivainen, and M. Salkinoja-Salonen. 2015. Mitochondrial toxicity of triclosan on mammalian cells. Toxicol. Rep. 2:624–637.
  • Al Habashneh, R., R. Farasin, and Y. Khader. 2017. The effect of a triclosan/copolymer/fluoride toothpaste on plaque formation, gingivitis, and dentin hypersensitivity: A single-blinded randomized clinical study. Quintessence Int. 48:123–130. doi:10.3290/j.qi.a37384.
  • Allard, A. S., M. Remberger, and A. H. Neilson. 1987. Bacterial O-methylation of halogen-substituted phenols. Appl. Environ. Microbiol. 53:839–845.
  • Allmyr, M., M. Adolfsson-Erici, M. S. McLachlan, and G. Sandborgh-Englund. 2006. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci. Total Environ. 372:87–93.
  • Al-Rajab, A. J., L. Sabourin, A. Scott, D. R. Lapen, and E. Topp. 2009. Impact of biosolids on the persistence and dissipation pathways of triclosan and triclocarban in an agricultural soil. Sci. Total Environ. 407:5978–5985. doi:10.1016/j.scitotenv.2009.08.003.
  • Alvarez-Rivera, G., M. Llompart, C. Garcia-Jares, and M. Lores. 2016. Pressurized liquid extraction-gas chromatography-mass spectrometry for confirming the photo-induced generation of dioxin-like derivatives and other cosmetic preservative photoproducts on artificial skin. J. Chromatogr. A 1440:37–44. doi:10.1016/j.chroma.2016.02.066.
  • Anderson, S. E., J. Franko, M. L. Kashon, K. L. Anderson, A. F. Hubbs, E. Lukomska, and B. J. Meade. 2013. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma. Toxicol. Sci. 132:96–106. doi:10.1093/toxsci/kfs328.
  • Anderson, S. E., B. J. Meade, C. M. Long, E. Lukomska, and N. B. Marshall. 2016. Investigations of immunotoxicity and allergic potential induced by topical application of triclosan in mice. J. Immunotoxicol. 13:165–172. doi:10.3109/1547691x.2015.1029146.
  • Aranami, K., and J. W. Readman. 2007. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66:1052–1056. doi:10.1016/j.chemosphere.2006.07.010.
  • Axelstad, M., J. Boberg, A. M. Vinggaard, S. Christiansen, and U. Hass. 2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem. Toxicol. 59:534–540. doi:10.1016/j.fct.2013.06.050.
  • Bagley, D. M., and Y. J. Lin. 2000. Clinical evidence for the lack of triclosan accumulation from daily use in dentifrices. Am. J. Dent. 13:148–152.
  • Balmer, M. E., T. Poiger, C. Droz, K. Romanin, P. A. Bergqvist, M. D. Muller, and H. R. Buser. 2004. Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ. Sci. Technol. 38:390–395.
  • Barkvoll, P., and G. Rolla. 1995. Triclosan reduces the clinical symptoms of the allergic patch test reaction (APR) elicited with 1% nickel sulphate in sensitised patients. J. Clin. Periodontol. 22:485–487.
  • Barrandon, Y., and H. Green. 1985. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc. Natl. Acad. Sci. USA. 82:5390–5394.
  • Basile, E. R., H. W. Avery, W. F. Bien, and J. M. Keller. 2011. Diamondback terrapins as indicator species of persistent organic pollutants: Using Barnegat Bay, New Jersey as a case study. Chemosphere. 82:137–144. doi:10.1016/j.chemosphere.2010.09.009.
  • Bedoux, G., B. Roig, O. Thomas, V. Dupont, and B. Le Bot. 2012. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment. Environ. Sci. Pollut. Res. Int. 19:1044–10465. doi:10.1007/s11356-011-0632-z.
  • Bernot, M. J., L. Smith, and J. Frey. 2013. Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs). Sci Total Environ. 445–446:219–230. doi:10.1016/j.scitotenv.2012.12.039.
  • Bester, K. 2003. Triclosan in a sewage treatment process–Balances and monitoring data. Water Res. 37:3891–3896. doi:10.1016/s0043-1354(03)00335-x.
  • Bester, K. 2005. Fate of triclosan and triclosan-methyl in sewage treatment plants and surface waters. Arch. Environ. Contam. Toxicol. 49:9–17. doi:10.1007/s00244-004-0155-4.
  • Black, J. G., D. Howes, and T. Rutherford. 1975. Percutaneous absorption and metabolism of Irgasan DP300. Toxicology. 3:33–47.
  • Braoudaki, M., and A. C. Hilton. 2004. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol. Lett. 235:305–309. doi:10.1016/j.femsle.2004.04.049.
  • Brenwald, N. P., and A. P. Fraise. 2003. Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect. 55:141–144.
  • Bukowska, B. 2003. Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135:435–441.
  • Buth, J. M., M. Grandbois, P. J. Vikesland, K. McNeill, and W. A. Arnold. 2009. Aquatic photochemistry of chlorinated triclosan derivatives: Potential source of polychlorodibenzo-p-dioxins. Environ. Toxicol. Chem. 28:2555–2563. doi:10.1897/08-490.1.
  • Butler, E., M. J. Whelan, R. Sakrabani, and R. Van Egmond. 2012. Fate of triclosan in field soils receiving sewage sludge. Environ. Pollut. 167:101–109. doi:10.1016/j.envpol.2012.03.036.
  • Calafat, A. M., X. Ye, L. Y. Wong, J. A. Reidy, and L. L. Needham. 2008. Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environ. Health. Persp. 116:303–307. doi:10.1289/ehp.10768.
  • Canosa, P., S. Morales, I. Rodriguez, E. Rubi, R. Cela, and M. Gomez. 2005. Aquatic degradation of triclosan and formation of toxic chlorophenols in presence of low concentrations of free chlorine. Anal. Bioanal. Chem. 383:1119–1126. doi:10.1007/s00216-005-0116-4.
  • Chai, L., A. Chen, P. Luo, H. Zhao, and H. Wang. 2017. Histopathological changes and lipid metabolism in the liver of Bufo gargarizans tadpoles exposed to triclosan. Chemosphere 182:255–266. doi:10.1016/j.chemosphere.2017.05.040.
  • Chedgzoy, P., G. Winckle, and C. M. Heard. 2002. Triclosan: Release from transdermal adhesive formulations and in vitro permeation across human epidermal membranes. Int. J. Pharm. 235:229–236.
  • Chen, H., S. A. Detmer, A. J. Ewald, E. E. Griffin, S. E. Fraser, and D. C. Chan. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell. Biol. 160:189–200. doi:10.1083/jcb.200211046.
  • Chen, J., J. Jiang, F. Zhang, H. Yu, and J. Zhang. 2004. Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms. Cell. Biol. Toxicol. 20:183–196.
  • Chen, X., J. L. Nielsen, K. Furgal, Y. Liu, I. B. Lolas, and K. Bester. 2011. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions. Chemosphere 84:452–456. doi:10.1016/j.chemosphere.2011.03.042.
  • Chen, X., J. Richard, Y. Liu, E. Dopp, J. Tuerk, and K. Bester. 2012. Ozonation products of triclosan in advanced wastewater treatment. Water Res. 46:2247–2256. doi:10.1016/j.watres.2012.01.039.
  • Chen, Y., B. Pi, H. Zhou, Y. Yu, and L. Li. 2009. Triclosan resistance in clinical isolates of Acinetobacter baumannii. J. Med. Microbiol. 58:1086–1091. doi:10.1099/jmm.0.008524-0.
  • Cherednichenko, G., R. Zhang, R. A. Bannister, V. Timofeyev, N. Li, E. B. Fritsch, W. Feng, G. C. Barrientos, N. H. Schebb, B. D. Hammock, K. G. Beam, N. Chiamvimonvat, and I. N. Pessah. 2012. Triclosan impairs excitation-contraction coupling and Ca2+ dynamics in striated muscle. Proc. Natl. Acad. Sci. U S A 109:14158–1463.
  • Chuanchuen, R., K. Beinlich, T. T. Hoang, A. Becher, R. R. Karkhoff-Schweizer, and H. P. Schweizer. 2001. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: Exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob. Agents. Chemother. 45:428–432. doi:10.1128/aac.45.2.428-432.2001.
  • Ciusa, M. L., L. Furi, D. Knight, F. Decorosi, M. Fondi, C. Raggi, J. R. Coelho, L. Aragones, L. Moce, P. Visa, A. T. Freitas, L. Baldassarri, R. Fani, C. Viti, G. Orefici, J. L. Martinez, I. Morrissey, and M. R. Oggioni. 2012. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int. J. Antimicrob. Agents 40:210–220. doi:10.1016/j.ijantimicag.2012.04.021.
  • Clayborn, A. B., S. N. Toofan, and F. R. Champlin. 2011. Influence of methylation on the antibacterial properties of triclosan in Pasteurella multocida and Pseudomonas aeruginosa variant strains. J. Hosp. Infect. 77:129–133. doi:10.1016/j.jhin.2010.09.021.
  • Clayton, E. M., M. Todd, J. B. Dowd, and A. E. Aiello. 2011. The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environ. Health Persp. 119:390–396. doi:10.1289/ehp.1002883.
  • Coogan, M. A., R. E. Edziyie, T. W. La Point, and B. J. Venables. 2007. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67:1911–1918. doi:10.1016/j.chemosphere.2006.12.027.
  • Coogan, M. A., and T. W. La Point. 2008. Snail bioaccumulation of triclocarban, triclosan, and methyltriclosan in a North Texas, USA, stream affected by wastewater treatment plant runoff. Environ. Toxicol. Chem. 27:1788–1793. doi:10.1897/07-374.1.
  • Crawford, B. R., and D. Decatanzaro. 2012. Disruption of blastocyst implantation by triclosan in mice: Impacts of repeated and acute doses and combination with bisphenol-A. Reprod. Toxicol. 34:607–613. doi:10.1016/j.reprotox.2012.09.008.
  • Davis, E. F., S. L. Klosterhaus, and H. M. Stapleton. 2012. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. Environ. Int. 40:1–7. doi:10.1016/j.envint.2011.11.008.
  • Deepa, P. R., S. Vandhana, U. Jayanthi, and S. Krishnakumar. 2012. Therapeutic and toxicologic evaluation of anti-lipogenic agents in cancer cells compared with non-neoplastic cells. Basic Clin. Pharmacol. Toxicol. 110:494–503. doi:10.1111/j.1742-7843.2011.00844.x.
  • DeLeo, P., S. Pawlowski, C. Barton, and D. J. Fort. 2011. Comment on “Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems”. Environ. Sci. Technol. 45:10283–10284. doi:10.1021/es202937q.
  • DeSalva, S. J., B. M. Kong, and Y. J. Lin. 1989. Triclosan: A safety profile. Am. J. Dent. 2:185–196.
  • Dhillon, G. S., S. Kaur, R. Pulicharla, S. K. Brar, M. Cledon, M. Verma, and R. Y. Surampalli. 2015. Triclosan: Current status, occurrence, environmental risks and bioaccumulation potential. Int. J. Environ. Res. Public Health 12:5657–5684. doi:10.3390/ijerph120505657.
  • Drury, B., J. Scott, E. J. Rosi-Marshall, and J. J. Kelly. 2013. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ. Sci. Technol. 47:8923–8930. doi:10.1021/es401919k.
  • Enan, E., B. Lasley, D. Stewart, J. Overstreet, and C. A. Vandevoort. 1996. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) modulates function of human luteinizing granulosa cells via cAMP signaling and early reduction of glucose transporting activity. Reprod. Toxicol. 10:191–198.
  • Escarrone, A. L., S. S. Caldas, E. G. Primel, S. E. Martins, and L. E. Nery. 2016. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. Sci. Total. Environ. 560-561:218–224. doi:10.1016/j.scitotenv.2016.04.039.
  • Etzel, T. M., A. M. Calafat, X. Ye, A. Chen, B. P. Lanphear, D. A. Savitz, K. Yolton, and J. M. Braun. 2017. Urinary triclosan concentrations during pregnancy and birth outcomes. Environ. Res. 156:505–511. doi:10.1016/j.envres.2017.04.015.
  • Fair, P. A., H. B. Lee, J. Adams, C. Darling, G. Pacepavicius, M. Alaee, G. D. Bossart, N. Henry, and D. Muir. 2009. Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ. Pollut. 157:2248–2254. doi:10.1016/j.envpol.2009.04.002.
  • Fang, J. L., R. L. Stingley, F. A. Beland, W. Harrouk, D. L. Lumpkins, and P. Howard. 2010. Occurrence, efficacy, metabolism, and toxicity of triclosan. J Environ. Sci. Health C Environ. Carcinogen Ecotoxicol. Rev. 28:147–171. doi:10.1080/10590501.2010.504978.
  • Fang, J. L., M. Vanlandingham, G. G. Da Costa, and F. A. Beland. 2016. Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. Environ. Toxicol. 3:609–623. doi:10.1002/tox.22074.
  • Fang, Y., X. Gao, F. Zhao, H. Zhang, W. Zhang, H. Yang, B. Lin, and Z. Xi. 2014. Comparative proteomic analysis of ovary for Chinese rare minnow (Gobiocypris rarus) exposed to chlorophenol chemicals. J. Proteom. 110:172–182. doi:10.1016/j.jprot.2014.07.026.
  • FDA. 2013. “Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; Proposed Amendment of the Tentative Final Monograph.” https://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/Reports/EconomicAnalyses/UCM379555.pdf.
  • Feng, Y., P. Zhang, Z. Zhang, J. Shi, Z. Jiao, and B. Shao. 2016. Endocrine disrupting effects of triclosan on the placenta in pregnant rats. PLoS One 11:e0154758. doi:10.1371/journal.pone.0154758.
  • Fu, J., X. Zhang, P. Chen, and Y. Zhang. 2016. Endoplasmic reticulum stress is involved in 2,4-dichlorophenol-induced hepatotoxicity. J. Toxicol. Sci. 41:745–756. doi:10.2131/jts.41.745.
  • Gangadharan, P. V. P., A. V. Nadaraja, A. Bhasi, S. Khan, and K. Bhaskaran. 2012. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions. Appl. Biochem. Biotechnol. 167:1603–1612. doi:10.1007/s12010-012-9573-3.
  • Gaume, B., N. Bourgougnon, S. Auzoux-Bordenave, B. Roig, B. Le Bot, and G. Bedoux. 2012. In vitro effects of triclosan and methyl-triclosan on the marine gastropod Haliotis tuberculata. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 156:87–94. doi:10.1016/j.cbpc.2012.04.006.
  • Geens, T., H. Neels, and A. Covaci. 2012. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87:796–802.
  • Ghassabian, A., J. J. Bongers-Schokking, J. Henrichs, V. W. Jaddoe, T. J. Visser, W. Visser, S. M. De Muinck Keizer-Schrama, H. Hooijkaas, E. A. Steegers, A. Hofman, F. C. Verhulst, J. Van Der Ende, Y. B. De Rijke, and H. Tiemeier. 2011. Maternal thyroid function during pregnancy and behavioral problems in the offspring: The generation R study. Pediatr. Res. 69:454–459. doi:10.1203/PDR.0b013e3182125b0c.
  • Gilbert, R. J. 1987. The oral clearance of zinc and triclosan after delivery from a dentifrice. J. Pharm. Pharmacol. 39:480–483.
  • Gilbert, R. J., S. B. Fraser, and F. J. Van Der Ouderaa. 1987. Oral disposition of triclosan (2,4,4ʹ-trichloro-2ʹ-hydroxydiphenyl ether) delivered from a dentifrice. Caries Res. 21:29–36.
  • Goodchild, C. G., M. Frederich, and S. I. Zeeman. 2016. Is altered behavior linked to cellular energy regulation in a freshwater mussel (Elliptio complanata) exposed to triclosan? Comp. Biochem. Physiol. C Toxicol. Pharmacol. 179:150–157. doi:10.1016/j.cbpc.2015.10.008.
  • Haggblom, M. M., L. J. Nohynek, and M. S. Salkinoja-Salonen. 1988. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 54:3043–3052.
  • Hanioka, N., H. Jinno, T. Nishimura, and M. Ando. 1997. Effect of 2,4,4ʹ-trichloro-2ʹ-hydroxydiphenyl ether on cytochrome P450 enzymes in the rat liver. Chemosphere 34:719–730.
  • Heffernan, A. L., C. Baduel, L. M. Toms, A. M. Calafat, X. Ye, P. Hobson, S. Broomhall, and J. F. Mueller. 2015. Use of pooled samples to assess human exposure to parabens, benzophenone-3 and triclosan in Queensland, Australia. Environ. Int. 85:77–83. doi:10.1016/j.envint.2015.09.001.
  • Heidler, J., and R. U. Halden. 2007. Mass balance assessment of triclosan removal during conventional sewage treatment. Chemosphere 66:362–369. doi:10.1016/j.chemosphere.2006.04.066.
  • Hinther, A., C. M. Bromba, J. E. Wulff, and C. C. Helbing. 2011. Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ. Sci. Technol. 45:5395–5402. doi:10.1021/es1041942.
  • Hollowell, J. G.Jr., P. L. Garbe, and D. T. Miller. 1999. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N. Engl. J. Med. 341:2016–2017.
  • Hong, S., H. J. Kwon, W. J. Choi, W. R. Lim, J. Kim, and K. Kim. 2014. Association between exposure to antimicrobial household products and allergic symptoms. Environ. Health Toxicol. 29:e2014017. doi:10.5620/eht.e2014017.
  • Ishibashi, H., N. Matsumura, M. Hirano, M. Matsuoka, H. Shiratsuchi, Y. Ishibashi, Y. Takao, and K. Arizono. 2004. Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat. Toxicol. 67:167–179. doi:10.1016/j.aquatox.2003.12.005.
  • James, M. O., C. J. Marth, and L. Rowland-Faux. 2012. Slow O-demethylation of methyl triclosan to triclosan, which is rapidly glucuronidated and sulfonated in channel catfish liver and intestine. Aquat. Toxicol. 124-125:72–82. doi:10.1016/j.aquatox.2012.07.009.
  • Jones, R. D., H. B. Jampani, J. L. Newman, and A. S. Lee. 2000. Triclosan: A review of effectiveness and safety in health care settings. Am. J Infect. Control. 28:184–196.
  • Juncker, J.-C. 2016. Commission impementing decision not approving triclosan as an existing active substance for use in biocidal products for product-type 1. In 528/2012, edited by European Union. Brussels: Jean-Claude Juncker.
  • Kanetoshi, A. 1992. Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4ʹ-trichloro-2ʹ-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Environ. Contam. Toxicol. 23:91–98.
  • Kanetoshi, A., E. Katsura, H. Ogawa, T. Ohyama, H. Kaneshima, and T. Miura. 1992. Acute toxicity, percutaneous absorption and effects on hepatic mixed function oxidase activities of 2,4,4ʹ-trichloro-2ʹ-hydroxydiphenyl ether (Irgasan DP300) and its chlorinated derivatives. Arch. Environ. Contam. Toxicol. 23:91–98.
  • Kanetoshi, A., H. Ogawa, E. Katsura, H. Kaneshima, and T. Miura. 1988. Formation of polychlorinated dibenzo-p-dioxins upon combustion of commercial textile products containing 2,4,4ʹ-trichloro-2ʹ-hydroxydiphenyl ether (Irgasan DP300). J. Chromatogr. 442:289–299.
  • Kim, J. Y., B. R. Yi, R. E. Go, K. A. Hwang, K. H. Nam, and K. C. Choi. 2014. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway. Environ. Toxicol. Pharmacol. 37:1264–1274. doi:10.1016/j.etap.2014.04.013.
  • Kim, S. A., H. Moon, K. Lee, and M. S. Rhee. 2015. Bactericidal effects of triclosan in soap both in vitro and in vivo. J. Antimicrob. Chemother. 70:3345–3352. doi:10.1093/jac/dkv275.
  • Kim, Y. M., K. Murugesan, S. Schmidt, V. Bokare, J. R. Jeon, E. J. Kim, and Y. S. Chang. 2011. Triclosan susceptibility and co-metabolism–A comparison for three aerobic pollutant-degrading bacteria. Bioresour. Technol. 102:2206–2212. doi:10.1016/j.biortech.2010.10.009.
  • Kinney, C. A., E. T. Furlong, S. L. Werner, and J. D. Cahill. 2006. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ. Toxicol. Chem. 25:317–26.
  • Kjaerheim, V., P. Barkvoll, S. M. Waaler, and G. Rolla. 1995. Triclosan inhibits histamine-induced inflammation in human skin. J. Clin. Periodontol. 22:423–426.
  • Koeppe, E. S., K. K. Ferguson, J. A. Colacino, and J. D. Meeker. 2013. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. Sci. Total Environ. 445-446:299–305. doi:10.1016/j.scitotenv.2012.12.052.
  • Kolpin, D. W., E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, and H. T. Buxton. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 36:1202–1211.
  • Kux, L. 2016. Federal Register Vol. 81 No. 126. https://www.gpo.gov/fdsys/pkg/FR-2016-06-30/pdf/2016-15410.pdf.
  • Lan, Z., T. Hyung Kim, K. Shun, B. X. Hui Chen, and H. Sik Kim. 2015. Triclosan exhibits a tendency to accumulate in the epididymis and shows sperm toxicity in male Sprague-Dawley rats. Environ. Toxicol. 30:83–91. doi:10.1002/tox.21897.
  • Lassen, T. H., H. Frederiksen, H. B. Kyhl, S. H. Swan, K. M. Main, A. M. Andersson, D. V. Lind, S. Husby, C. Wohlfahrt-Veje, N. E. Skakkebaek, and T. K. Jensen. 2016. Prenatal triclosan exposure and anthropometric measures including anogenital distance in Danish infants. Environ. Health. Persp. 124:1261–1268. doi:10.1289/ehp.1409637.
  • Latch, D. E., J. L. Packer, W. A. Arnold, and K. McNeill. 2003. Photochemical conversion of triclosan to 2,8-dichlorodibenzo-p-dioxin in aqueous solution. J Photochem. Photobiol. A-Chem. 158:63–66. doi:10.1016/s1010-6030(03)00103-5.
  • Latch, D. E., J. L. Packer, B. L. Stender, J. VanOverbeke, W. A. Arnold, and K. McNeill. 2005. Aqueous photochemistry of triclosan: Formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products. Environ. Toxicol. Chem. 24:517–525.
  • Lawrence, J. R., E. Topp, M. J. Waiser, V. Tumber, J. Roy, G. D. Swerhone, P. Leavitt, A. Paule, and D. R. Korber. 2015. Resilience and recovery: The effect of triclosan exposure timing during development, on the structure and function of river biofilm communities. Aquat. Toxicol. 161:253–266. doi:10.1016/j.aquatox.2015.02.012.
  • Lee, D. G., and K. H. Chu. 2013. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. Chemosphere 93:1904–1911. doi:10.1016/j.chemosphere.2013.06.069.
  • Lee, H. R., K. A. Hwang, K. H. Nam, H. C. Kim, and K. C. Choi. 2014. Progression of breast cancer cells was enhanced by endocrine-disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem. Res. Toxicol. 27:834–842. doi:10.1021/tx5000156.
  • Levy, C. W., A. Roujeinikova, S. Sedelnikova, P. J. Baker, A. R. Stuitje, A. R. Slabas, D. W. Rice, and J. B. Rafferty. 1999. Molecular basis of triclosan activity. Nature 398:383–384. doi:10.1038/18803.
  • Li, H., X. Zhang, Q. Qiu, Z. An, Y. Qi, D. Huang, and Y. Zhang. 2013. 2,4-dichlorophenol induces apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella) through mitochondrial pathway. Aquat. Toxicol. 140-141:117–122. doi:10.1016/j.aquatox.2013.05.015.
  • Li, S., J. Zhao, G. Wang, Y. Zhu, F. Rabito, M. Krousel-Wood, W. Chen, and P. K. Whelton. 2015. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: Experience in NHANES 2003-2010. Int. J Hyg. Environ. Health 218:401–406. doi:10.1016/j.ijheh.2015.03.004.
  • Li, Y., Z. Shan, W. Teng, X. Yu, Y. Li, C. Fan, X. Teng, R. Guo, H. Wang, J. Li, Y. Chen, W. Wang, M. Chawinga, L. Zhang, L. Yang, Y. Zhao, and T. Hua. 2010. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25-30 months. Clin. Endocrinol. (Oxf) 72:825–829. doi:10.1111/j.1365-2265.2009.03743.x.
  • Lin, D., Y. Li, Q. Zhou, Y. Xu, and D. Wang. 2014. Effect of triclosan on reproduction, DNA damage and heat shock protein gene expression of the earthworm Eisenia fetida. Ecotoxicology 23:1826–1832. doi:10.1007/s10646-014-1320-9.
  • Lin, Y. J. 2000. Buccal absorption of triclosan following topical mouthrinse application. Am. J Dent. 13:215–217.
  • Lindstrom, A., I. J. Buerge, T. Poiger, P. A. Bergqvist, M. D. Muller, and H. R. Buser. 2002. Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ. Sci. Technol. 36:2322–2329.
  • Liu, B., Y. Wang, K. L. Fillgrove, and V. E. Anderson. 2002. Triclosan inhibits enoyl-reductase of type I fatty acid synthase in vitro and is cytotoxic to MCF-7 and SKBr-3 breast cancer cells. Cancer Chemother. Pharmacol. 49:187–193. doi:10.1007/s00280-001-0399-x.
  • Lodish, H., A. Berk, and S. L. Zipursky. 2000. Molecular Cell Biology, 4th ed. New York: W. H. Freeman.
  • Lores, M., M. Llompart, L. Sanchez-Prado, C. Garcia-Jares, and R. Cela. 2005. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal. Bioanal. Chem. 381:1294–1298. doi:10.1007/s00216-004-3047-6.
  • Louis, G. W., D. R. Hallinger, M. J. Braxton, A. Kamel, and T. E. Stoker. 2017. Effects of chronic exposure to triclosan on reproductive and thyroid endpoints in the adult Wistar female rat. J. Toxicol. Environ. Health A. 80(4):236–249. doi:10.1080/15287394.2017.1287029.
  • Lozano, N., C. P. Rice, M. Ramirez, and A. Torrents. 2013. Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water Res. 47:4519–4527. doi:10.1016/j.watres.2013.05.015.
  • Lv, W., Y. Chen, D. Li, X. Chen, and J. Leszczynski. 2013. Methyl-triclosan binding to human serum albumin: Multi-spectroscopic study and visualized molecular simulation. Chemosphere 93:1125–1130. doi:10.1016/j.chemosphere.2013.06.035.
  • Lv, Y., C. Rui, Y. Dai, Q. Pang, Y. Li, R. Fan, and S. Lu. 2016. Exposure of children to BPA through dust and the association of urinary BPA and triclosan with oxidative stress in Guangzhou, China. Environ. Sci. Process. Impacts. 18:1492–1499. doi:10.1039/c6em00472e.
  • Ma, Y., C. Liu, P. K. Lam, R. S. Wu, J. P. Giesy, M. Hecker, X. Zhang, and B. Zhou. 2011. Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. Toxicology 282:146–153. doi:10.1016/j.tox.2011.01.024.
  • Macedo, S., T. Torres, and M. M. Santos. 2017. Methyl-triclosan and triclosan impact embryonic development of Danio rerio and Paracentrotus lividus. Ecotoxicology. doi:10.1007/s10646-017-1778-3.
  • Macherius, A., T. Eggen, W. Lorenz, M. Moeder, J. Ondruschka, and T. Reemtsma. 2012. Metabolization of the bacteriostatic agent triclosan in edible plants and its consequences for plant uptake assessment. Environ. Sci. Technol. 46:10797–10804. doi:10.1021/es3028378.
  • Macherius, A., D. R. Lapen, T. Reemtsma, J. Rombke, E. Topp, and A. Coors. 2014. Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application. Sci. Total. Environ. 472:235–238. doi:10.1016/j.scitotenv.2013.10.113.
  • Manevski, N., P. Swart, K. K. Balavenkatraman, B. Bertschi, G. Camenisch, O. Kretz, H. Schiller, M. Walles, B. Ling, R. Wettstein, D. J. Schaefer, P. Itin, J. Ashton-Chess, F. Pognan, A. Wolf, and K. Litherland. 2015. Phase II metabolism in human skin: Skin explants show full coverage for glucuronidation, sulfation, N-acetylation, catechol methylation, and glutathione conjugation. Drug. Metab. Dispos. 43:126–139. doi:10.1124/dmd.114.060350.
  • Marshall, N. B., E. Lukomska, C. M. Long, M. L. Kashon, D. D. Sharpnack, A. P. Nayak, K. L. Anderson, B. Jean Meade, and S. E. Anderson. 2015. Triclosan induces thymic stromal lymphopoietin in skin promoting Th2 allergic responses. Toxicol. Sci. 147:127–139. doi:10.1093/toxsci/kfv113.
  • Martinez-Zapata, M., C. Aristizabal, and G. Penuela. 2013. Photodegradation of the endocrine-disrupting chemicals 4n-nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe(III) and in the absence/presence of humic acids. J. Photochem. Photobiol. A-Chem. 251:41–49. doi:10.1016/j.jphotochem.2012.10.009.
  • Mathews, S., S. Henderson, and D. Reinhold. 2014. Uptake and accumulation of antimicrobials, triclocarban and triclosan, by food crops in a hydroponic system. Environ. Sci. Pollut. Res. Int. 21:6025–6033. doi:10.1007/s11356-013-2474-3.
  • Matozzo, V., A. Costa Devoti, and M. G. Marin. 2012. Immunotoxic effects of triclosan in the clam Ruditapes philippinarum. Ecotoxicology 2:66–74. doi:10.1007/s10646-011-0766-2.
  • McAvoy, D. C., B. Schatowitz, M. Jacob, A. Hauk, and W. S. Eckhoff. 2002. Measurement of triclosan in wastewater treatment systems. Environ. Toxicol. Chem. 21:1323–1329.
  • Meador, J. P., A. Yeh, G. Young, and E. P. Gallagher. 2016. Contaminants of emerging concern in a large temperate estuary. Environ. Pollut. 213:254–267. doi:10.1016/j.envpol.2016.01.088.
  • Mezcua, M., M. J. Gomez, I. Ferrer, A. Aguera, M. D. Hernando, and A. R. Fernandez-Alba. 2004. Evidence of 2,7/2,8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Anal. Chim. Acta 524:241–247.
  • Moss, T., D. Howes, and F. M. Williams. 2000. Percutaneous penetration and dermal metabolism of triclosan (2,4, 4'-trichloro-2'-hydroxydiphenyl ether). Food Chem. Toxicol. 38:361–370.
  • Mulla, S. I., H. Wang, Q. Sun, A. Hu, and C. P. Yu. 2016. Characterization of triclosan metabolism in Sphingomonas sp. strain YL-JM2C. Sci. Rep. 6:21965. doi:10.1038/srep21965.
  • Muller, H. P., K. M. Barrieshi-Nusair, E. Kononen, and M. Yang. 2006. Effect of triclosan/copolymer-containing toothpaste on the association between plaque and gingival bleeding: A randomized controlled clinical trial. J. Clin. Periodontol. 33:811–818. doi:10.1111/j.1600-051X.2006.00993.x.
  • Narrowe, A. B., M. Albuthi-Lantz, E. P. Smith, K. J. Bower, T. M. Roane, A. M. Vajda, and C. S. Miller. 2015. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure. Microbiome 3:6. doi:10.1186/s40168-015-0069-6.
  • Navon, R., S. Hernandez-Ruiz, J. Chorover, and B. Chefetz. 2011. Interactions of carbamazepine in soil: Effects of dissolved organic matter. J Environ. Qual. 40:942–948. doi:10.2134/jeq2010.0446.
  • Newton, A. P., S. M. Cadena, M. E. Rocha, E. G. Carnieri, and M. B. Martinelli De Oliveira. 2005. Effect of triclosan (TRN) on energy-linked functions of rat liver mitochondria. Toxicol. Lett. 160:49–59. doi:10.1016/j.toxlet.2005.06.004.
  • Nietch, C. T., E. L. Quinlan, J. M. Lazorchak, C. A. Impellitteri, D. Raikow, and D. Walters. 2013. Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environ. Toxicol. Chem. 32:2874–2887. doi:10.1002/etc.2385.
  • Olaniyan, L. W., N. Mkwetshana, and A. I. Okoh. 2016. Triclosan in water, implications for human and environmental health. Springerplus 5:1639. doi:10.1186/s40064-016-3287-x.
  • Palmer, R. K., L. M. Hutchinson, B. T. Burpee, E. J. Tupper, J. H. Pelletier, Z. Kormendy, A. R. Hopke, E. T. Malay, B. L. Evans, A. Velez, and J. A. Gosse. 2012. Antibacterial agent triclosan suppresses RBL-2H3 mast cell function. Toxicol. Appl. Pharmacol. 258:99–108.
  • Paul, K. B., J. M. Hedge, R. Bansal, R. T. Zoeller, R. Peter, M. J. DeVito, and K. M. Crofton. 2012. Developmental triclosan exposure decreases maternal, fetal, and early neonatal thyroxine: A dynamic and kinetic evaluation of a putative mode-of-action. Toxicology 300:31–45. doi:10.1016/j.tox.2012.05.023.
  • Paul, K. B., J. M. Hedge, M. J. DeVito, and K. M. Crofton. 2010. Short-term exposure to triclosan decreases thyroxine in vivo via upregulation of hepatic catabolism in young Long-Evans rats. Toxicol. Sci. 113:367–379. doi:10.1093/toxsci/kfp271.
  • Perencevich, E. N., M. T. Wong, and A. D. Harris. 2001. National and regional assessment of the antibacterial soap market: A step toward determining the impact of prevalent antibacterial soaps. Am. J Infect. Control. 29:281–283.
  • Philippat, C., J. Botton, A. M. Calafat, X. Ye, M. A. Charles, and R. Slama. 2014. Prenatal exposure to phenols and growth in boys. Epidemiology 25:625–635. doi:10.1097/ede.0000000000000132.
  • Provencher, G., R. Berube, P. Dumas, J. F. Bienvenu, E. Gaudreau, P. Belanger, and P. Ayotte. 2014. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry. J Chromatogr. A 1348:97–104. doi:10.1016/j.chroma.2014.04.072.
  • Pycke, B. F., L. A. Geer, M. Dalloul, O. Abulafia, A. M. Jenck, and R. U. Halden. 2014. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York. Environ. Sci. Technol. 48:8831–8838. doi:10.1021/es501100w.
  • Qiao, X. L., X. D. Zheng, Q. Xie, X. H. Yang, J. Xiao, W. F. Xue, and J. W. Chen. 2014. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB. J Hazard. Mater. 275:210–214. doi:10.1016/j.jhazmat.2014.05.012.
  • Queckenberg, C., J. Meins, B. Wachall, O. Doroshyenko, D. Tomalik-Scharte, B. Bastian, M. Abdel-Tawab, and U. Fuhr. 2010. Absorption, pharmacokinetics, and safety of triclosan after dermal administration. Antimicrob. Agents Chemother. 54:570–572.
  • Raut, S. A., and R. A. Angus. 2010. Triclosan has endocrine-disrupting effects in male western mosquitofish. Gambusia Affinis. Environ. Toxicol. Chem. 29:1287–1291. doi:10.1002/etc.150.
  • Riley, P., and T. Lamont. 2013. Triclosan/copolymer containing toothpastes for oral health. Cochrane Database Syst. Rev. 12:Cd010514. doi:10.1002/14651858.CD010514.pub2.
  • Rudel, H., W. Bohmer, M. Muller, A. Fliedner, M. Ricking, D. Teubner, and C. Schroter-Kermani. 2013. Retrospective study of triclosan and methyl-triclosan residues in fish and suspended particulate matter: Results from the German Environmental Specimen Bank. Chemosphere 91:1517–1524. doi:10.1016/j.chemosphere.2012.12.030.
  • Rule, K. L., V. R. Ebbett, and P. J. Vikesland. 2005. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan. Environ. Sci. Technol. 39:3176–185.
  • Ruszkiewicz, J. A., S. Li, M. B. Rodriguez, and M. Aschner. 2017. Is triclosan a neurotoxic agent?. J Toxicol. Environ. Health. B 20:104–117. doi:10.1080/10937404.2017.1281181.
  • Sadowski, M. C., R. H. Pouwer, J. H. Gunter, A. A. Lubik, R. J. Quinn, and C. C. Nelson. 2014. The fatty acid synthase inhibitor triclosan: Repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget. 5:9362–9381.
  • Sanchez-Prado, L., M. Llompart, M. Lores, C. Garcia-Jares, J. M. Bayona, and R. Cela. 2006. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere 65:1338–1347. doi:10.1016/j.chemosphere.2006.04.025.
  • Sandborgh-Englund, G., M. Adolfsson-Erici, G. Odham, and J. Ekstrand. 2006. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol. Environ. Health A 69:1861–1873.
  • Schmid, B., J. F. Rippmann, M. Tadayyon, and B. S. Hamilton. 2005. Inhibition of fatty acid synthase prevents preadipocyte differentiation. Biochem. Biophys. Res. Commun. 328:1073–1082. doi:10.1016/j.bbrc.2005.01.067.
  • Schnitzler, J. G., B. Frederich, M. Dussenne, P. H. Klaren, F. Silvestre, and K. Das. 2016. Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquat. Toxicol. 181:1–10. doi:10.1016/j.aquatox.2016.10.019.
  • Shala, L., and G. D. Foster. 2010. Surface water concentrations and loading budgets of pharmaceuticals and other domestic-use chemicals in an urban watershed (Washington, DC, USA). Arch. Environ. Contam. Toxicol. 58:551–561. doi:10.1007/s00244-009-9463-z.
  • Shim, J., L. M. Weatherly, R. H. Luc, M. T. Dorman, A. Neilson, R. Ng, C. H. Kim, P. J. Millard, and J. A. Gosse. 2016. Triclosan is a mitochondrial uncoupler in live zebrafish. J Appl. Toxicol. 36:1662–1667. doi:10.1002/jat.3311.
  • Siddiqui, W. H. 1979. Pharmacokinetics of triclosan in rat after intravenous and intravaginal administration. J Environ. Pathol. Toxicol. 2:861–871.
  • Singer, H., S. Muller, C. Tixier, and L. Pillonel. 2002. Triclosan: Occurrence and fate of a widely used biocide in the aquatic environment: Field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 36:4998–5004.
  • Sorg, O. 2014. AhR signalling and dioxin toxicity. Toxicol. Lett. 230:225–233. doi:10.1016/j.toxlet.2013.10.039.
  • Spanier, A. J., T. Fausnight, T. F. Camacho, and J. M. Braun. 2014. The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy Asthma Proc. 35:475–481. doi:10.2500/aap.2014.35.3803.
  • Statista. 2016a. “Sales growth of the leading toothpaste brands in the United States in 2016 (change to prior sales year).” https://www.statista.com/statistics/195651/us-sales-growth-of-toothpaste-brands-in-2007-and-2008/.
  • Statista. 2016b. “Sales of the leading toothpaste brands in the United States in 2016 (in million U.S. dollars).” https://www.statista.com/statistics/195650/leading-us-toothpaste-brands-in-2007-and-2008-based-on-sales/.
  • Suller, M. T., and A. D. Russell. 2000. Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 46:11–18.
  • Tal, T. 2017. Developmental exposure to triclosan alters microbiota commnity structure and locomotor activity in larval zebrafish. Baltimore, MA: Society of Toxicology.
  • Tamura, I., Y. Kanbara, M. Saito, K. Horimoto, M. Satoh, H. Yamamoto, and Y. Oyama. 2012. Triclosan, an antibacterial agent, increases intracellular Zn(2+) concentration in rat thymocytes: Its relation to oxidative stress. Chemosphere 86:70–75. doi:10.1016/j.chemosphere.2011.09.009.
  • Tan, W. P., S. Suresh, H. L. Tey, L. Y. Chiam, and A. T. Goon. 2010. A randomized double-blind controlled trial to compare a triclosan-containing emollient with vehicle for the treatment of atopic dermatitis. Clin. Exp. Dermatol. 35:e109–e112.
  • Tavakoly Sany, S. B., R. Hashim, A. Salleh, M. Rezayi, D. J. Karlen, B. B. Razavizadeh, and E. Abouzari-Lotf. 2015. Dioxin risk assessment: Mechanisms of action and possible toxicity in human health. Environ. Sci. Pollut. Res. Int. 22:19434–19450. doi:10.1007/s11356-015-5597-x.
  • Tessier, L., J. L. Boisvert, L. B. Vought, and J. O. Lacoursie. 2000. Effects of 2,4-dichlorophenol on the net-spinning behavior of hydropsyche slossonae larvae (Trichoptera; Hydropsychidae), an early warning signal of chronic toxicity. Ecotoxicol. Environ. Saf. 46:207–217. doi:10.1006/eesa.1999.1897.
  • Tixier, C., H. P. Singer, S. Canonica, and S. R. Muller. 2002. Phototransfomation of ticlosan in surface waters: A relevant elimination process for this widely used biocide–laboratory studies, field measurements, and modeling. Environ. Sci. Technol. 36:3482–3489.
  • Tulp, M. T. M., G. Sundstrom, L. B. Martron, and O. Huntzinger. 1979. Metabolism of chlorodiphenyl ethers and Irgasan DP300. Xenobiotica. 9:65–77.
  • Udoji, F., T. Martin, R. Etherton, and M. M. Whalen. 2010. Immunosuppressive effects of triclosan, nonylphenol, and DDT on human natural killer cells in vitro. J. Immunotoxicol. 7:205–212.
  • Velez, M. P., T. E. Arbuckle, and W. D. Fraser. 2015. Female exposure to phenols and phthalates and time to pregnancy: The Maternal-Infant Research on Environmental Chemicals (MIREC) Study. Fertil. Steril. 103 (1011–1020.e2). doi:10.1016/j.fertnstert.2015.01.005.
  • Waaler, S. M., G. Rolla, K. K. Skjorland, and B. Ogaard. 1993. Effects of oral rinsing with triclosan and sodium lauryl sulfate on dental plaque formation: A pilot study. Scand. J Dent. Res. 101:192–195.
  • Wang, C. F., and Y. Tian. 2015. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. Environ. Pollut. 206:195–201. doi:10.1016/j.envpol.2015.07.001.
  • Wang, L. Q., C. N. Falany, and M. O. James. 2004. Triclosan as a substrate and inhibitor of 3ʹ-phosphoadenosine 5ʹ-phosphosulfate-sulfotransferase and UDP-glucuronosyl transferase in human liver fractions. Drug. Metab. Dispos. 32:1162–1169.
  • Wang, X., X. Chen, X. Feng, F. Chang, M. Chen, Y. Xia, and L. Chen. 2015. Triclosan causes spontaneous abortion accompanied by decline of estrogen sulfotransferase activity in humans and mice. Sci. Rep. 5:18252. doi:10.1038/srep18252.
  • Weatherly, L. M., R. H. Kennedy, J. Shim, and J. A. Gosse. 2013. A microplate assay to assess chemical effects on RBL-2H3 mast cell degranulation: Effects of triclosan without use of an organic solvent. J Vis. Exp. e50671. doi:10.3791/50671.
  • Weatherly, L. M., J. Shim, H. N. Hashmi, R. H. Kennedy, S. T. Hess, and J. A. Gosse. 2016. Antimicrobial agent triclosan is a proton ionophore uncoupler of mitochondria in living rat and human mast cells and in primary human keratinocytes. J Appl. Toxicol. 36:777–789. doi:10.1002/jat.3209.
  • Wei, L., P. Qiao, Y. Shi, Y. Ruan, J. Yin, Q. Wu, and B. Shao. 2017. Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clin. Chim. Acta 466:133–137. doi:10.1016/j.cca.2016.12.024.
  • Weiss, L., T. E. Arbuckle, M. Fisher, T. Ramsay, R. Mallick, R. Hauser, A. LeBlanc, M. Walker, P. Dumas, and C. Lang. 2015. Temporal variability and sources of triclosan exposure in pregnancy. Int. J Hyg. Environ. Health. 218:507–513. doi:10.1016/j.ijheh.2015.04.003.
  • Willey, J. C., A. J. Saladino, C. Ozanne, J. F. Lechner, and C. C. Harris. 1984. Acute effects of 12-O-tetradecanoylphorbol-13-acetate, teleocidin B, or 2,3,7,8-tetrachlorodibenzo-p-dioxin on cultured normal human bronchial epithelial cells. Carcinogenesis 5:209–215.
  • Winitthana, T., S. Lawanprasert, and P. Chanvorachote. 2014. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS One 9:e110851. doi:10.1371/journal.pone.0110851.
  • Witorsch, R. J. 2014. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products. Crit. Rev. Toxicol. 44:535–555. doi:10.3109/10408444.2014.910754.
  • Wu, C., A. L. Spongberg, and J. D. Witter. 2009. Adsorption and degradation of triclosan and triclocarban in soils and biosolids-amended soils. J Agric. Food. Chem. 57:4900–4905. doi:10.1021/jf900376c.
  • Wu, J. L., J. Liu, and Z. Cai. 2010. Determination of triclosan metabolites by using in-source fragmentation from high-performance liquid chromatography/negative atmospheric pressure chemical ionization ion trap mass spectrometry. Rapid. Commun. Mass Spectrom. 24:1828–1834. doi:10.1002/rcm.4558.
  • Wu, Q., H. Shi, C. D. Adams, T. Timmons, and Y. Ma. 2012. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan. Sci. Total Environ. 439:18–25. doi:10.1016/j.scitotenv.2012.08.090.
  • Wu, X., F. Ernst, J. L. Conkle, and J. Gan. 2013. Comparative uptake and translocation of pharmaceutical and personal care products (PPCPs) by common vegetables. Environ. Int. 60:15–22. doi:10.1016/j.envint.2013.07.015.
  • Wu, Y., F. A. Beland, S. Chen, and J. L. Fang. 2015. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Arch. Toxicol. 89:1297–1311. doi:10.1007/s00204-014-1308-5.
  • Wu, Y., P. Chitranshi, L. Loukotkova, G. Gamboa Da Costa, F. A. Beland, J. Zhang, and J. L. Fang. 2017. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells. Arch. Toxicol. 91:2405–2423. doi:10.1007/s00204-016-1893-6.
  • Yang, B., G. G. Ying, J. L. Zhao, L. J. Zhang, Y. X. Fang, and L. D. Nghiem. 2011. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation. J Hazard. Mater 186:227–235. doi:10.1016/j.jhazmat.2010.10.106.
  • Yeh, A., D. J. Marcinek, J. P. Meador, and E. P. Gallagher. 2017. Effect of contaminants of emerging concern on liver mitochondrial function in Chinook salmon. Aquat. Toxicol. 190:21–31. doi:10.1016/j.aquatox.2017.06.011.
  • Yin, J., L. Wei, Y. Shi, J. Zhang, Q. Wu, and B. Shao. 2016. Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ. Geochem. Health 38:1125–1135. doi:10.1007/s10653-015-9777-x.
  • Ying, G. G., and R. S. Kookana. 2007. Triclosan in wastewaters and biosolids from Australian wastewater treatment plants. Environ. Int. 3:199–205. doi:10.1016/j.envint.2006.09.008.
  • Ying, G. G., X. Y. Yu, and R. S. Kookana. 2007. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ. Pollut. 150:300–305. doi:10.1016/j.envpol.2007.02.013.
  • Yu, B. J., J. A. Kim, and J. G. Pan. 2010. Signature gene expression profile of triclosan-resistant Escherichia coli. J. Antimicrob. Chemother. 65:1171–1177. doi:10.1093/jac/dkq114.
  • Yu, J. C., T. Y. Kwong, Q. Luo, and Z. Cai. 2006. Photocatalytic oxidation of triclosan. Chemosphere 65:390–2399. doi:10.1016/j.chemosphere.2006.02.011.
  • Yueh, M. F., K. Taniguchi, S. Chen, R. M. Evans, B. D. Hammock, M. Karin, and R. H. Tukey. 2014. The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proc. Natl. Acad. Sci. U S A 111:17200–17205. doi:10.1073/pnas.1419119111.
  • Zeng, L., H. Ma, S. Pan, J. You, G. Zhang, Z. Yu, G. Sheng, and J. Fu. 2016. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicol. In. Vitro. 34:35–44. doi:10.1016/j.tiv.2016.03.002.
  • Zhang, H., and C. H. Huang. 2003. Oxidative transformation of triclosan and chlorophene by manganese oxides. Environ. Sci. Technol. 37:2421–2430.
  • Zhang, L., J. Niu, and Y. Wang. 2016. Full life-cycle toxicity assessment on triclosan using rotifer Brachionus calyciflorus. Ecotoxicol. Environ. Saf 127:30–35. doi:10.1016/j.ecoenv.2015.12.043.
  • Zhao, J. L., G. G. Ying, Y. S. Liu, F. Chen, J. F. Yang, and L. Wang. 2010. Occurrence and risks of triclosan and triclocarban in the Pearl River system, South China: From source to the receiving environment. J Hazard. Mater. 179:215–222. doi:10.1016/j.jhazmat.2010.02.082.
  • Zorrilla, L. M., E. K. Gibson, S. C. Jeffay, K. M. Crofton, W. R. Setzer, R. L. Cooper, and T. E. Stoker. 2009. The effects of triclosan on puberty and thyroid hormones in male Wistar rats. Toxicol. Sci. 107:56–64. doi:10.1093/toxsci/kfn225.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.